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Abstract 

Crash Modification Factors (CMFs) are key metrics used to quantify the effectiveness of safety countermeasures 

in reducing crashes and prioritizing safety improvements. The primary methods for estimating CMFs include 

Observational Before-After (BA) studies and the cross-sectional approach, both of which have inherent limitations, 

such as data requirements. While the BA method accounts for regression-to-the-mean (RTM) bias, the cross-

sectional method is often more applicable when BA studies are impractical. Recent advancements in machine 

learning (ML) have enhanced CMF estimation by providing more accurate statistics. For instance, ML-based 

clustering can reveal the true impact of countermeasures across different sites, highlighting variations in 

effectiveness that are masked by traditional methods. In comparison, the BA method tends to underestimate 

benefits when accounting for changes in traffic. By integrating ML techniques with statistical methods, the 

augmented approach provides more reliable and precise estimates of countermeasure effectiveness, accounting for 

heterogeneity across segments. This synthesis of ML and traditional safety analysis methods offers a more 

comprehensive understanding of safety countermeasures, enabling transportation safety experts to make more 

informed decisions about which countermeasures are most appropriate for different sites.  
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A Introduction 

The concept of the Crash Modification Factor (CMF) quantifies the safety benefits associated 

with various countermeasures and depicts the anticipated changes in crashes following their 

implementation (Davis, 2000). Accurately estimating the CMF requires a robust assessment of 

the expected number of crashes at a particular site both before and after the implementation of 

a specific countermeasure (Rudin-Brown et al., 2012). In the last two decades, various 

approaches have been utilized to predict crashes and gauge the efficacy of countermeasures, 

with cross-sectional and before-and-after models emerging as the most widely adopted methods 

(P. Y. Park, 2007). Anticipating further advancements, the upcoming US Highway Safety 

Manual is expected to provide a comprehensive set of CMFs reflecting the impact of diverse 

design and operational strategies on highways (AASHTO, 2010). 

The literature has put forth a diverse range of statistical approaches for estimating the impact 

of countermeasures. The next section examines the most commonly employed methods for 

assessing countermeasures, such as the cross-sectional statistical model and the Before-and-

After (BA) method (Al-Marafi & Somasundaraswaran, 2023). 

B Crash modification factors 

This study aimed to review various methodological approaches for estimating CMFs, offering 

a comprehensive overview. It examines the key methodologies used in estimating CMFs, 

highlighting their main advantages and disadvantages. This review serves as an essential 

precursor to the application of more advanced analytical tools, such as Machine learning (ML) 

and artificial intelligence, in analyzing road safety outcomes. The structure of the study is as 

follows: the next section explores the approaches commonly used for implementing 

observational BA studies. 

B.1 Observational before-and-after studies 

Observational studies conducted before and after implementing a countermeasure at various 

sites aim to gauge the change in crash numbers or other risk factors (Gross et al., 2010). These 

studies address the regression-to-the-mean (RTM) bias, where sites with high crash frequencies 

in one year tend to decrease in the following year due to the random nature of crashes, regardless 

of countermeasure or traffic conditions. Several approaches have been employed in these 

studies, including the, Naïve approach, Empirical Bayes (EB) method, and Full Bayes (FB) 

method (Yu & Abdel-Aty, 2014; Elvik, 2017; Hauer et al., 2012; Lyon et al., 2020; Shahdah et 

al., 2014). 

B.1.1 Naïve approach 

The fundamental assumption of the naïve approach is that crash frequencies before 

countermeasure implementation will align with expectations (Yu & Abdel-Aty, 2014). In this 

method, expected crashes are calculated by determining the ratio of road crashes to the number 
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of years before countermeasure, and this ratio is then applied to estimate expected crashes after 

countermeasure, considering only the post-countermeasure period. However, according to 

(Gross & Jovanis, 2007), the naïve approach tends to overestimate the countermeasure effect 

due to the RTM problem. Additionally, the naïve approach inaccurately predicted a total 

reduction in crashes after a hypothetical countermeasure without any actual effect. This 

inaccuracy stems from the failure to account for RTM bias in this approach (Fawcett et al., 

2017). 

B.1.2 Empirical Bayes approach 

The EB approach aims to enhance road safety estimation. This method improves estimation 

precision, addressing the primary limitation of the Comparison Group (CG) and Naïve 

approaches by incorporating the RTM effect (Y. Park & Saccomanno, 2005; Shen & Gan, 

2003). It achieves this by calculating a weighted average of observed and predicted crashes 

(Hauer et al., 2012). 

In general, utilizing an EB before-and-after approach offers two significant advantages for 

estimating countermeasure effects. Firstly, the EB model helps to mitigate or eliminate much 

of the RTM bias inherent in the naïve approach, thereby producing more dependable estimates 

of CMFs. Secondly, the EB approach takes into consideration changes in traffic volume during 

the before-and-after study period. These variations in traffic volume serve as a surrogate 

variable, representing both observed and unobserved factors at study sites, such as unrecorded 

weather conditions. The EB before-and-after approach has been widely embraced as a primary 

safety evaluation tool by numerous US and Canadian agencies, including the Interactive 

Highway Safety Design Model and the Highway Safety Manual (D.W. Harwood, F.M. Council, 

E. Hauer, W.E. Hughes, 2000). 

Despite their relative success in addressing RTM bias, EB before-after models still possess 

certain limitations, which are outlined below: 

1) EB before-after models necessitate extensive data, such as yearly-based exposure data over 

a specified study period, which escalates the cost and duration of analyses. However, 

researchers often lack the resources to gather the requisite inputs, leading to incomplete results. 

For instance, databases for sites in Canada and the US lack yearly-based exposures like traffic 

volumes, posing challenges for EB approach utilization. 

2) EB before-after models rely on the assumption that changes in traffic volume between before 

and after periods account for the effects of all unobserved factors. However, other factors 

beyond traffic volumes, such as reporting biases, may independently or in combination affect 

crash frequency. Although the EB before-after analysis itself does not mandate this assumption, 

most researchers predominantly focus on traffic volume as the primary input factor. 

3) EB before-after models typically examine only one countermeasure at a time, neglecting the 

simultaneous estimation of multiple countermeasure effects. 

4) EB before-after models yield average effects rather than tailored effects for specific sites, 

such as sites. This poses challenges for decision-makers addressing site-specific issues, as the 

average effectiveness of a countermeasure might not suffice. Evaluating individual 
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countermeasures for local application via before-after models requires substantial time and 

resources, rendering it (Al-Marafi & Somasundaraswaran, 2023). 

B.1.3 Full Bayes approach 

The FB approach, similar to the EB method, utilizes non-treated reference sites to draw 

inferences and account for potential influences unrelated to the countermeasure. (El-Basyouny 

& Sayed, 2006) highlighted a key distinction between the FB and EB approaches: in the FB 

approach, predicted crash frequencies without countermeasures are derived from the Crash 

Prediction Model (CPM) estimated using data from both the pre-countermeasure period of 

treated sites and reference sites, while the EB approach utilizes data solely from reference sites 

to estimate the CPM. Recent recommendations by researchers suggest employing the FB 

approach for evaluating the impact of safety countermeasures (El-Basyouny & Sayed, 2006; 

Sayed et al., 2016). This approach offers several advantages over others, including the ability 

to account for all data uncertainties, requiring less data, allowing more flexibility in selecting 

crash frequency distributions, providing more detailed causal inferences, and considering 

spatial correlation effects among sites in the model formulation. Sacchi and Sayed (2015) 

compared the results of naïve, EB, and FB approaches in estimating countermeasure 

effectiveness using two methods for selecting hypothetical countermeasure sites: random 

selection to mitigate selection bias and non-random selection based on abnormal crash 

frequency (black spots). For randomly selected sites, all approaches yielded reasonable results. 

However, for non-randomly selected sites, the FB approach demonstrated superior performance 

compared to the naïve and EB approaches. It's important to note that the complexity of the FB 

approach may render the EB approach more appealing to researchers for practical 

implementation (Shahdah et al., 2014). 

B.2 Cross-sectional method 

Although observational before-after (BA) studies are typically considered the preferred 

approach for estimating CMFs, practical constraints are associated with their implementation. 

These constraints include the need for accurate knowledge of the countermeasure date to 

delineate the before and after periods and the requirement for several years of post-

countermeasure data collection. Additionally, assessing safety effects becomes complex when 

multiple countermeasures are applied at a single site (Hauer, 1983; Al-Marafi & 

Somasundaraswaran, 2023). In such cases, the cross-sectional method offers an alternative for 

estimating CMFs due to its simpler data acquisition process compared to observational BA 

studies. 

The cross-sectional method, also known as Safety Performance Function (SPF), establishes a 

relationship between crash occurrences and the geometric characteristics and traffic volumes 

of a roadway (Rahman et al., 2020). 

B.3 Propensity Score Method 

Past researchers have frequently treated countermeasures as exogenous variables in their 

modeling approaches. However, some scholars, including Kim and Washington (2006), have 
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sought to tackle countermeasure selection bias by introducing the concept of endogeneity. They 

aim to address endogenous relationships to gain a better understanding of the true effects of 

various countermeasures on crashes. Drawing from crash analysis results using highway 

intersection data from Georgia, they argued that the inconsistent results often seen in 

countermeasure evaluations stem from a lack of control for potential endogeneity issues 

between crash rates and countermeasures (Kim & Washington, 2006). 

In the realm of sites, Austin and Carson (2002) acknowledged that the presence of warning 

devices, like flashing lights or gates, could be endogenous to crash rates. This implies that crash 

rates are frequently used as a basis for installing warning devices such as flashing lights or gates 

at sites. To address countermeasure selection bias effectively, it is essential to understand the 

criteria used to select specific sites, such as sites, for various types of countermeasures. 

However, traditional before-and-after and cross-sectional models fail to directly investigate 

why particular sites are chosen for countermeasures. Consequently, their estimations are 

influenced by the non-randomness inherent in the countermeasure selection process. One 

significant issue in this regard is known as Regression-To-the-Mean (RTM) bias, stemming 

from the tendency to apply countermeasures at sites with a history of high crash rates. 

Countermeasure selection bias can still persist if there is a systematic bias in how sites are 

chosen for improvements. For example, if all selected sites exhibit train speeds above a certain 

threshold or have a minimum number of tracks, these criteria could introduce a systematic 

selection bias (Austin & Carson, 2002). 

B.4 Machine Learning models 

 Recent advances in ML offer new opportunities to improve the reliability of safety evaluations 

at Highway Railway Grade Crossings (HRGCs). ML models excel at identifying complex 

patterns and interactions in large datasets, which can complement and improve traditional 

statistical approaches. Zayandehroodi’s studies introduce innovative ML-based frameworks for 

safety analysis, aiming to overcome the limitations of statistical methods. The first study 

(Zayandehroodi et al., 2024) proposed a ML framework for evaluating countermeasures by 

integrating data-driven techniques into each step of the analysis. It used XGBoost (extreme 

gradient boosting) algorithm to first identify the most influential factors associated with crash 

severity and frequency. Next, it applied a Deep Latent Class Analysis (DLCA) clustering 

method to group similar sites based on those important features. By clustering sites into more 

homogeneous categories, the study could account for heterogeneity across HRGCs. Finally, 

within each cluster, the study computed CMFs and their standard errors for various 

countermeasures (such as gates, lights, bells, and crossbucks) by analyzing the crash data in 

that cluster. The second study (Zayandehroodi et al., 2025) builds upon this framework by 

introducing a hybrid Negative Binomial–LSTM model to improve crash prediction and 

explicitly model uncertainty. This approach combines the statistical limitation of a Negative 

Binomial (NB) regression with the sequence-learning capability of a Long Short-Term Memory 

(LSTM) neural network, implemented within the EB context. In essence, the hybrid NB-LSTM 

model uses historical crash time-series data to capture temporal dependencies (e.g. trends or 

seasonality in crash occurrence) that a static NB model might miss, while still outputting 

predictions in a form compatible with the EB method. By better predicting the expected crashes 

in HRGCs (including quantifying the prediction uncertainty), the EB-adjusted CMFs can be 

estimated with greater accuracy and stability.  
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Table 1 furnishes a compilation of methods employed for estimating CMF, accompanied by 

their respective advantages and disadvantages. 

 

Table 1. Summary of Methodologies to Estimate CMF 
Method Advantages  Disadvantages 

Naïve approach Ease of application Does not consider RTM 

bias; may overestimate the 

countermeasure effect; 

lacks control over the 

effects of external causal 

factors. 

Empirical Bayes approach Addressing RTM bias; 

does not require a large 

number of reference sites. 

Challenging to gather 

adequate data. 

Yields more precise 

estimates compared to 

naive comparison method. 

Full Bayes approach Addressing RTM bias; 

capability to incorporate 

all uncertainties in the 

data; does not necessitate a 

large number of reference 

sites; able to 

accommodate temporal 

and spatial variations. 

Challenges in application; 

collecting suitable data is 

demanding. 

Serves as a complex 

alternative to the EB 

approach. 

Cross-sectional method Addressing RTM bias; 

considers variations in 

countermeasure 

effectiveness over time. 

Does not consider the 

effects of unaccounted 

elements; necessitates a 

sufficient sample size, 

particularly when large 

explanatory variables are 

integrated into the 

developed model. 
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Propensity Score Method - Addresses systematic 

selection bias 

- Includes multiple 

countermeasure selection 

criteria 

-Assesses the impact of 

individual 

countermeasures 

separately 

- Offers only the average 

effect of countermeasures 

Machine Learning models -ML models can provide 

more accurate predictions 

by learning complex rela-

tionships in the data that 

traditional methods may 

miss. 

-ML models can process 

and analyze large amounts 

of data efficiently, allow-

ing for better insights and 

predictions. 

-ML models can incorpo-

rate various types of data 

(e.g., traffic, environmen-

tal conditions, counter-

measure types) and learn 

from them to improve the 

prediction of crash reduc-

tions. 

 

- The "black-box" nature 

of these models makes it 

challenging to understand 

how specific inputs lead to 

certain predictions. 

 

C Discussion and conclusions 

Various methods for estimating CMFs each offer distinct advantages and disadvantages when 

applied in transportation safety analysis. The methods range from simple approaches like the 

Naïve approach to more sophisticated techniques such as ML models. Understanding the trade-

offs between these methods is essential for selecting the most appropriate approach based on 

available data, research goals, and the need for precision. 

The Naïve approach is widely recognized for its simplicity and ease of application, making it a 

good starting point for many studies. However, it has significant drawbacks, including its failure 

to account for RTM bias and its tendency to overestimate the effect of countermeasures. 
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Additionally, it lacks the ability to control for external factors that may influence the results, 

reducing its reliability in complex settings. 

In contrast, the EB approach addresses RTM bias and provides more precise estimates 

compared to the Naïve method. One of its primary advantages is that it does not require a large 

number of reference sites, making it more feasible in certain scenarios. However, collecting 

sufficient data for EB analysis can be challenging, as it still requires accurate and extensive 

information to generate reliable results. 

The Full Bayes approach expands on EB by incorporating uncertainties in the data, thus offering 

a more comprehensive understanding of the effects of countermeasures. This method can 

accommodate variations over time and space, which is particularly valuable for dynamic 

environments. However, it is more complex to apply and requires demanding data collection 

processes, making it less accessible for some studies. Despite these challenges, it provides a 

more flexible and robust alternative to the EB method. 

The Cross-sectional method also accounts for RTM bias and includes the ability to assess how 

countermeasure effectiveness may vary over time. However, it struggles with unaccounted 

external factors and often necessitates a large sample size, especially when integrating many 

explanatory variables into the model. This requirement can make the method less practical in 

smaller or less data-rich studies. 

The Propensity Score Method is effective at addressing systematic selection bias and allows for 

the inclusion of multiple countermeasure criteria. However, it has limitations, including its 

focus on the average effect of countermeasures rather than assessing individual 

countermeasures. This reduces its ability to capture the full range of potential variations across 

different contexts. 

Finally, ML models offer several key advantages, including the ability to handle large datasets, 

uncover complex relationships in the data, and incorporate diverse types of input (e.g., traffic, 

environmental factors, and countermeasure types). These capabilities make ML models 

particularly powerful in predicting crash reductions and offering more accurate estimates than 

traditional methods. However, their primary disadvantage lies in the "black-box" nature of 

many ML algorithms, such as deep learning. This lack of interpretability can make it difficult 

to understand the rationale behind specific predictions, limiting the practical application of 

these models in safety-critical scenarios where transparency is essential. 



Evaluating Safety Countermeasures at Highway-Railway Grade Crossings: A Review  _ May 

2025 

12 

D Reference list 

AASHTO. (2010). An introduction to the Highway Safety Manual. In Washington D.C.: 

Federal Highway Administration. http://www.highwaysafetymanual.org/ 

Al-Marafi, M. N., & Somasundaraswaran, K. (2023). A review of the state-of-the-art methods 

in estimating crash modification factor (CMF). Transportation Research Interdisciplinary 

Perspectives, 20(May). https://doi.org/10.1016/j.trip.2023.100839 

Austin, R. D., & Carson, J. L. (2002). An alternative accident prediction model for highway-

rail interfaces. Accident Analysis and Prevention, 34(1), 31–42. 

https://doi.org/10.1016/S0001-4575(00)00100-7 

D.W. Harwood, F.M. Council, E. Hauer, W.E. Hughes,  and A. V. (2000). Prediction of the 

Expected Safety Performance of Rural Two-Lane Highways. In US Department of 

Transportation (Issue December). 

Davis, G. A. (2000). Accident reduction factors and causal inference in traffic safety studies: A 

review. Accident Analysis and Prevention, 32(1), 95–109. https://doi.org/10.1016/S0001-

4575(99)00050-0 

El-Basyouny, K., & Sayed, T. (2006). Comparison of two negative binomial regression 

techniques in developing accident prediction models. Transportation Research Record, 

1950, 9–16. https://doi.org/10.3141/1950-02 

Elvik, R. (2017). Road safety effects of roundabouts: A meta-analysis. Accident Analysis and 

Prevention, 99, 364–371. https://doi.org/10.1016/j.aap.2016.12.018 

Fawcett, L., Thorpe, N., Matthews, J., & Kremer, K. (2017). A novel Bayesian hierarchical 

model for road safety hotspot prediction. Accident Analysis and Prevention, 99, 262–271. 

https://doi.org/10.1016/j.aap.2016.11.021 

Gross, F., & Jovanis, P. P. (2007). Estimation of the safety effectiveness of lane and shoulder 

width: Case-control approach. Journal of Transportation Engineering, 133(6), 362–369. 

https://doi.org/10.1061/(ASCE)0733-947X(2007)133:6(362) 

Hauer, E. (1983). An application of the likelihood/bayes approach to the estimation of safety 

countermeasure effectiveness. Accident Analysis and Prevention, 15(4), 287–298. 

https://doi.org/10.1016/0001-4575(83)90053-2 

Hauer, E., Bonneson, J., Council, F., Srinivasan, R., & Zegeer, C. (2012). Crash modification 

factors. Transportation Research Record, 2279, 67–74. https://doi.org/10.3141/2279-08 

Kim, D. G., & Washington, S. (2006). The significance of endogeneity problems in crash 

models: An examination of left-turn lanes in intersection crash models. Accident Analysis 

and Prevention, 38(6), 1094–1100. https://doi.org/10.1016/j.aap.2006.04.017 

Lyon, C., Persaud, B., Merritt, D., & Cheung, J. (2020). Empirical bayes before-after study to 

develop crash modification factors and functions for high friction surface treatments on 

curves and ramps. Transportation Research Record, 2674(12), 505–514. 



Evaluating Safety Countermeasures at Highway-Railway Grade Crossings: A Review  _ May 

2025 

13 

https://doi.org/10.1177/0361198120957327 

Park, P. Y. (2007). Estimating Effectiveness of Countermeasures Based on Multiple Sources : 

Application to Highway-Railway Grade Crossings By. University of Waterloo. 

Park, Y., & Saccomanno, F. F. (2005). Evaluating Factors Affecting Safety at Highway–

Railway Grade Crossings. Transportation Research Record, 1, 1–9. 

Rahman, M. A., Sun, X., & Das, S. (2020). Reconfiguring Urban Undivided Four-Lane 

Highways to Five-Lane: A Nonideal but Very Effective Solution for Crash Reduction. 

Journal of Transportation Engineering, Part A: Systems, 146(10), 04020116. 

https://doi.org/10.1061/jtepbs.0000422 

Rudin-Brown, C. M., Lenné, M. G., Edquist, J., & Navarro, J. (2012). Effectiveness of traffic 

light vs. boom barrier controls at road-rail level crossings: A simulator study. Accident 

Analysis and Prevention, 45, 187–194. https://doi.org/10.1016/j.aap.2011.06.019 

Sayed, T., Sacchi, E., & DeLeur, P. (2016). Evaluating safety benefits of the Insurance 

Corporation of British Columbia road improvement program using a full Bayes approach. 

Transportation Research Record, 2582(2582), 26–33. https://doi.org/10.3141/2582-04 

Shahdah, U., Saccomanno, F., & Persaud, B. (2014). Integrated traffic conflict model for 

estimating crash modification factors. Accident Analysis and Prevention, 71, 228–235. 

https://doi.org/10.1016/j.aap.2014.05.019 

Shen, J., & Gan, A. (2003). Development of Crash Reduction Factors Methods , Problems , 

and Research Needs. 03, 50–56. 

Yu, R., & Abdel-Aty, M. (2014). Analyzing crash injury severity for a mountainous freeway 

incorporating real-time traffic and weather data. Safety Science, 63, 50–56. 

https://doi.org/10.1016/j.ssci.2013.10.012 

Zayandehroodi, M., Mojaradi, B., & Bagheri, M. (2024). Evaluating the effectiveness of safety 

countermeasures at highway–railway grade crossing based on a machine learning 

framework. Traffic Injury Prevention, 1–8. 

https://doi.org/10.1080/15389588.2024.2387713 

Zayandehroodi, M., Mojaradi, B., & Bagheri, M. (2025). Improving reliability of safety 

countermeasure evaluation at highway-rail grade crossings through aleatoric uncertainty 

modeling with machine learning techniques. Reliability Engineering and System Safety, 

261(November 2024), 111082. https://doi.org/10.1016/j.ress.2025.111082 



Evaluating Safety Countermeasures at Highway-Railway Grade Crossings: A Review  _ May 

2025 

14 

 


