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Abstract

The new Cycle Route Act (2020) aims to significantly expand Swiss cycling infrastructure
within a decade. However, in stark contrast to this policy agenda, from a research
perspective the lack of comprehensive data on cycling infrastructure is a significant barrier,
particularly for studying the impact of infrastructure modifications on a junction-specific
granularity (e.g. on induced cycling demand or crash risks). Existing data suffers from at
least one of the following deficiencies: (1) fragmentation along administrative borders, (2)
purely link-oriented data without information on junctions, (3) missing information on
historical infrastructure changes, and (4) inadequate categorization from a road design
perspective. The contribution of this paper is therefore threefold. First, a object detection
method is utilized on aerial imagery to generate a dataset that addresses all four previously
mentioned issues. For this purpose, we train a YOLOv8 (You Only Look Once, version 8)
model, a common deep learning architecture for object detection, to detect ten different
cycling-specific infrastructure features. Second, it is demonstrated that the method is
valid by comparing a subset of the resulting data set to a external communal level data
set. Third, the overall historical development of cycling-specific infrastructure in the ten
largest Swiss agglomerations is discussed.
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1 Introduction

In 2018, Swiss voters approved a constitutional amendment on cycling by a large majority.
The resulting law, the new Cycle Route Act, came into force in 2020. It aims to significantly
expand cycling infrastructure. Consequently, the Office for Spatial Development (ARE)
projects the modal share of bikes to double until the year 2050. Considering the prevailing
political agenda, the lack of data on bicycle infrastructure is striking, particularly from
a research perspective. Researchers seeking to use such data for the study of induced
cycling demand (e.g. Song et al., 2017; Wysling and Purves, 2022; Pritchard et al., 2019;
Hwang and Guhathakurta, 2023) or crash risks (e.g. Tait et al., 2022; Vandenbulcke et al.,
2014; Smith and Welsh, 1988; Reynolds et al., 2009; Van Petegem et al., 2021; DiGioia
et al., 2017), which are often presumed to be associated with enhanced infrastructure, face
significant data constraints.

Although certain communes or cantons have made notable efforts to map their streets
according to bicycle accessibility, a federally consistent data set remains unavailable. If
data is available at all, it suffers from at least one of three shortcomings:

1. It is predominantly link-oriented, such as OpenStreetMap (OSM). A considerable
number of infrastructure modifications focus on junctions and adjacent street seg-
ments. Consequently, these alterations are frequently not documented. However,
these nodes are the locations where the impacts may be the most substantial, as
evidenced by the fact that most bike crashes occur near junctions.

2. A longitude (time) component is almost always absent, which complicates the
formulation of a robust identification strategy for research designs related to bicycle
infrastructure (Vanparijs et al., 2015).

3. It lacks detailed records of concrete infrastructure measures that comprise the
possible alternatives given the physical, economical, and legal constraints in the
road design process. This limitation hinders the development of research that could
help planners make informed decisions based on scientific evidence (Sohail et al.,
2023).

The objective of this paper is threefold. First, a deep learning-enabled object detection
method is utilized on aerial imagery to generate a data set that satisfies all three criteria.
Second, it is shown that the result is reliable. Third, the overall development of cycling-
specific infrastructure in the largest Swiss agglomerations is analyzed. For this purpose, we
train YOLOv8 (You Only Look Once, version 8), a predefined deep learning architecture
for object detection, to detect ten different cycling-specific infrastructure features.
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1.1 Related Work

Cycling infrastructure databases are an important element for cycling-related research.
Past efforts to catalog cycling infrastructure have used OSM and publicly available datasets,
including aerial imagery from Google (Ferster et al., 2023). Machine learning methods
have been widely used to identify road infrastructure and provide the necessary data
for subsequent analyses, including intersection designs and their safety (Wijnands et al.,
2021), road marking extraction (Jin et al., 2012), YOLO applications to identify lane
markings for improved road safety and management (Antwi et al., 2024a) and to locate
school zones from satellite imagery (Antwi et al., 2024b), and using Google street view
images to map and manage street signs (Campbell et al., 2019; Habibi Aghdam et al.,
2016). The work presented in this paper builds on these methods by incorporating the
component of time, analyzing how cycling infrastructure has evolved.

2 Data

Our study area focuses on the major agglomerations in Switzerland, as dense urban areas
and their suburban surroundings exhibit the highest share of cycling modal splits today.
Their high share of short trips by other modes offers great potential for further shifts
toward cycling (Bundesamt für Statistik and Bundesamt für Raumentwicklung, 2023). In
order to capture these areas well, we take the ten largest administrative communes by
population and draw a bounding box around their agglomeration. Figure 1 displays the
chosen bounding boxes that represent our study area in orange. Although some of these
bounding boxes extend into neighboring countries, we focus only on the Swiss territory
within these bounding boxes.

We utilize the natural color orthophoto mosaic SWISSIMAGE provided by the Federal
Office of Topography (swisstopo). The timing of recording aerial imagery is characterized
by an alternating pattern, with different Swiss regions undergoing imaging in successive
years. This results in a coverage cycle that is approximately three-yearly since 1998. The
imagery has a ground resolution of 0.1 meters in images taken since 2018, 0.25 meters
since 2005, and 0.5 meters for earlier images, as indicated in Table 3.

To generate image-label pairs for model training, over 40 square kilometers of aerial
imagery from each of the ten agglomerations and all available years from 1998 to 2023 and

4



Object Detection for Cycling-Specific Infrastructure April 28, 2025

Figure 1: Map of the study area

therefore in each of the three available resolutions, were manually labeled using QGIS. In
each image, all relevant cycling infrastructure was captured with a manually drawn poly-
gon. The ten relevant cycling infrastructure objects are crosswalks, shark teeth (indicating
yielding relations), circles (roundabouts), bike stopping spaces ("Veloaufstellflächen",
where cyclists can stop ahead of cars at traffic lights), retaining bars (indicating stop-
ping lines at intersections), pedestrian islands, bike pictograms, red colored bike lanes,
advanced retaining bars ("vorgezogene Haltebalken", where bike lanes advance closer to
the intersection than car lanes), and (yellow) bike lanes. Each label was validated by a
second annotator in line with the four-eyes principle. This resulted in over 15,175 labeled
instances (see Tables 4 and 5 in Appendix B for an overview).

The labels (i.e., polygons) were transformed into minimum rotated rectangles. The
resulting directed bounding boxes formed the basic image-label pairs necessary for training
the YOLO model. Portions of the image-pair labels were reserved for model validation.

3 Method

A pretrained YOLOv8 model was used for the analysis. It was trained on the manually
labeled instances of cycling infrastructure. One model was trained for all of the possible
object classes (infrastructure types) and resolutions (10, 25, 50 centimeters), as this
was found to perform better than one specific model for each class or resolution. There
were 4782 (∼80%) images for training, 543 for validation (∼10%), and 520 for testing
(∼10%).
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One input tile consist of a 102× 102 meters (or 1024× 1024 pixels) cutout of the aerial
images. Orthophotos with 25cm and 50cm resolution were up-sampled to ensure each
tile had the same number of pixels. A sliding window was implemented to cover all
agglomeration bounding boxes, with an 62 meter overlap to minimize instances missed
due to placement at the edge of a tile.

After obtaining the model predictions, some post-processing steps were implemented. The
predictions from the model provided instances of cycling infrastructure in all of the ten
agglomerations over all of the available aerial imagery years (1,127,885 detected instances
in total over 23 years). All detected instances with all confidence levels were kept and
used in the post-processing steps. The intersection over union (IoU) was computed for all
instances of an object class, over all years. The polygons of any objects of the same class
with an IoU > 0.5 were merged into a single object.

Preliminary inspection of the results showed some significant "gaps" in detected objects,
i.e., objects that were detected in one year but not the following year. Manual checks
proved most of these cases to be a result of some type of occlusion. For example, an object
was detected in one year but then not visible in the next year because it was covered by
trees, shadows, cars, etc. This issue of occlusion is common when working with aerial
imagery. To avoid this problem, the missing detections at the agglomeration level were
"infilled": if an object was detected in one year, not detected in the next year, and then
again detected in the following year, the missing case was overridden (based on a threshold
IoU value).

Lastly, the results were aggregated to the intersection level, and only for "major inter-
sections". To define major intersections, intersections of OSM lines were first buffered
by 35 meters. All line crossings within a proximity of 25 meters were clustered, and the
clustered buffers then merged into a single geometry. For each resulting geometry, the
traffic volumes from the national traffic model passing through the geometry were summed.
The intersections with the top 25 % highest traffic volumes were defined as "major". These
are therefore intersections where cycling infrastructure is the most needed, as opposed to
smaller intersections. While this step reduces some of the available detail of the results, it
also improves the accuracy when correctly classifying infrastructure. For example, the
model may not be able to correctly predict all instances of cycling infrastructure at every
arm of an intersection, but it very likely is able to predict whether an intersection overall
has a case of a specific cycling infrastructure. For the purposes of this work, this level of
detail is sufficient and worth the additional prediction accuracy.
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3.1 Performance Metrics

The performance metrics used to estimate the quality of the model are precision (the
ratio of true positives to the sum of all positives), recall (the ratio of true positives to
the sum of true positives and false negatives), and F1 (the geometric mean of the former
measures). Performance metrics were computed for the overall model, for each of the
three resolutions, and for each of the ten agglomerations.

Model performance was also analyzed using external validation datasets: OSM and Zurich
city’s publicly available data on its bike lanes. By comparing the roads where the trained
model predicted different types of bike lanes and where OSM and the city actually has
those types of bike lanes, the model’s accuracy was validated against data that were not
used in the model training process at all (either during image labeling, model training, or
model validation).

4 Results

An example of the model’s output is shown in Figures 3, 4, 5, and 6 in Appendix C. Table
1 shows an overview of the model performance. The values are F1 scores, in parentheses
are precision and recall. Each column is a subset of the test set. Performance for each of
the ten objects varies, from poor (0.42 for bike lanes) to good (0.83 for crosswalks). The
performance also varies by image resolution. Interestingly, images with better resolution
(10 centimeters) do not always produce better predictions than the lower resolutions
(25 centimeters) (e.g., for bike stopping spaces). There is also variation in the model
performance by agglomeration. Only object classes with at least four instances were used
to evaluate model performance, which explains why some resolutions and agglomerations
have missing values. Overall, the model does not perform well for a range of objects. Some
aggregation is necessary to improve the results and their usefulness for further analysis.

In part due to the relatively poor performance of the model at the individual object level,
and since that level of detail was not necessary for the goals of this paper, the predictions
were aggregated to the intersection level. For each major intersections, the presence of the
individual object classes was measured. For example, if a bike pictogram was predicted
anywhere within the "major intersection" polygon, then that intersection was labeled
as having a bike pictogram. In this way, even if individual bike pictograms were not
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Table 1: Model performance

Full Test Set 10 25 50 Basel Bern Biel Genf Lausanne Lugano Luzern St. Gallen Winterthur Zurich

crosswalk 0.83
(0.80, 0.86)

0.84
(0.81, 0.88)

0.85
(0.81, 0.89)

0.80
(0.78, 0.82)

0.80
(0.77, 0.82)

0.86
(0.80, 0.93)

0.81
(0.79, 0.83)

0.84
(0.82, 0.87)

0.84
(0.83, 0.85)

0.89
(0.88, 0.90)

0.85
(0.82, 0.88)

0.81
(0.86, 0.77)

0.94
(0.89, 1.00)

0.81
(0.74, 0.88)

shark_teeth 0.67
(0.72, 0.63)

0.78
(0.80, 0.76)

0.74
(0.71, 0.76)

0.10
(0.20, 0.07)

0.50
(0.71, 0.38)

0.75
(0.81, 0.70)

0.67
(0.53, 0.91) - 0.78

(0.78, 0.78)
0.83

(0.75, 0.92)
0.55

(0.50, 0.62)
0.67

(0.82, 0.56)
0.92

(0.92, 0.92)
0.65

(0.67, 0.63)

circle 0.66
(0.71, 0.62)

0.91
(1.00, 0.83)

0.71
(0.62, 0.83) - - 0.71

(0.62, 0.83) - - - - - - - -

bike_stopping_space 0.66
(0.70, 0.63)

0.63
(0.77, 0.53)

0.72
(0.64, 0.82) - - 0.67

(0.80, 0.57) - - 0.50
(0.57, 0.44) - - 0.80

(0.67, 1.00) - -

retaining_bar 0.63
(0.69, 0.58)

0.65
(0.74, 0.57)

0.64
(0.64, 0.63)

0.60
(0.68, 0.53)

0.48
(0.62, 0.39)

0.60
(0.57, 0.62)

0.75
(0.74, 0.76)

0.64
(0.70, 0.58)

0.68
(0.81, 0.59)

0.60
(0.81, 0.48)

0.49
(0.52, 0.46)

0.77
(0.77, 0.77)

0.82
(1.00, 0.70)

0.70
(0.68, 0.72)

pedestrian_island 0.54
(0.51, 0.56)

0.55
(0.45, 0.71)

0.59
(0.50, 0.71)

0.48
(0.60, 0.39)

0.41
(0.50, 0.35)

0.67
(0.57, 0.80)

0.37
(0.29, 0.50)

0.40
(0.36, 0.44)

0.57
(0.55, 0.59)

0.75
(0.60, 1.00)

0.75
(0.82, 0.69)

0.78
(0.75, 0.82)

0.44
(0.33, 0.67)

0.50
(0.41, 0.65)

bike_pictogram 0.51
(0.61, 0.44)

0.57
(0.61, 0.54)

0.48
(0.59, 0.41) - 0.40

(0.66, 0.28)
0.43

(0.65, 0.32)
0.32

(0.25, 0.45)
0.61

(0.73, 0.52)
0.72

(0.84, 0.63)
0.40

(0.30, 0.60)
0.46

(0.44, 0.48)
0.50

(0.60, 0.43)
1.00

(1.00, 1.00)
0.48

(0.55, 0.42)

red_colored_bike_lane 0.45
(0.60, 0.36)

0.46
(0.58, 0.38)

0.58
(0.61, 0.55) - - 0.60

(0.50, 0.75) - 0.52
(0.62, 0.45)

0.33
(0.50, 0.25) - 0.55

(0.62, 0.50) - - -

advanced_retaining_bar 0.43
(0.44, 0.43)

0.37
(0.36, 0.38)

0.55
(0.52, 0.58) - 0.15

(0.25, 0.11)
0.50

(0.43, 0.60)
0.62

(0.62, 0.62) - - - 0.64
(0.62, 0.67)

0.29
(0.25, 0.33) - 0.33

(0.33, 0.33)

bike_lane 0.42
(0.44, 0.41)

0.43
(0.44, 0.41)

0.49
(0.48, 0.50)

0.29
(0.34, 0.25)

0.18
(0.24, 0.15)

0.55
(0.56, 0.54)

0.43
(0.61, 0.33)

0.35
(0.44, 0.29)

0.47
(0.43, 0.53)

0.45
(0.32, 0.73)

0.51
(0.56, 0.47)

0.41
(0.46, 0.37)

0.56
(0.44, 0.76)

0.41
(0.41, 0.40)

identified by the model, one true positive would suffice to correctly identify the presence
of pictograms at that intersection. This is feasible since 1) it is likely that the presence of
one instance of cycling infrastructure at an intersection indicates the presence of more
instances, and 2) this study aims to explore the evolution of cycling infrastructure at
intersections in general, and not for individual arms of an intersection.

The model predictions were compared to two external data sets not used in training: OSM
and Zurich city’s official cycling network data. These networks were first buffered, and
predicted objects above a certain IoU threshold with those networks were considered to
be true positives. Table 2 therefore shows the precision and recall of the model’s predicted
bike lanes relative to the OSM and Zurich city data.

Table 2: Comparison of model performance relative to external Zurich bike lanes data
sets. OSM = OpenStreetMap

Dataset Recall (%) Precision (%)

Zurich City Data 73.8 76.6
Zurich OSM Data 71.5 68.5

5 Findings and Discussion

In general, all agglomerations show an increasing quantity of cycling infrastructure over
time (see Figure 7 in the appendix). However, some of the increases are likely due
to improvements in the image resolution, specifically in the years when 25-centimeter
resolutions first become available (2005 and after). The infrastructure types most directly
related to cycling show the strongest increases, especially since 2015 (bike lanes, bike
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Figure 2: Share of major intersections without cycling infrastructure over time. Note the
different scales on the y-axis

pictograms, and red colored bike lanes). More recently popularized bicycle infrastructure,
such as the advanced retaining bar and bike stopping space, see little or only more recent
improvement. These quantities are expected to increase in the near future as aerial images
are updated.

Figure 2 shows the share of major intersections in each agglomeration that do not have at
least one instance of a specific type of cycling infrastructure. In other words, this figure
shows the share of intersections that do not have cycling-friendly infrastructure. For all
agglomerations, over time, the share of such intersections is decreasing. Notable jumps
are present when the resolution improves, due to the improved image quality and not
necessarily because more infrastructure was implemented in those years. The plots for the
different infrastructure types show that some infrastructure is more widely implemented
(bike lanes and pictograms), while other types are relatively more rare (protected waiting
areas and red bike lanes).

Geneva shows the most significant improvement and has the lowest share of intersections
without cycling infrastructure, outperforming all other agglomerations. Luzern shows a
relatively strong reduction of intersections without red bike lanes, but otherwise performs
similarly to other agglomerations. Lugano has the highest share of intersections without
cycling infrastructure (85 % or higher). Figures 8 and 9 (appendix) show the infrastructure
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developments over time for each agglomeration by settlement type and road ownership.

These results show a significant expansion of cycling infrastructure in all agglomerations
over time, regardless of settlement type and road ownership. It is interesting to note the
relative performance of the agglomerations, where Geneva can be seen to have relatively
more infrastructure than the other agglomerations, and national roads are also relatively
more advanced in their cycling infrastructure. This makes sense, as federal roads are
(formally) governed by the same rules for all agglomerations, while cantonal and communal
practices may differ widely. However, national roads intersections are usually larger and
more complex, so the presence of cycling infrastructure may be an effect of intersection
size and not directly caused by the owners’ decisions. The wide difference between
agglomerations regarding cantonal and communal road cycling infrastructure indicates
more efforts are needed to ensure cycling infrastructure is being implemented at all levels
of government to achieve national cycling modal share goals.

This sort of historical data on cycling infrastructure is also useful for further analyses, such
as crash risk analysis. Historical crashes cannot always be matched to the infrastructure
at the location of the crash, since that infrastructure is likely to change over time. With
the historical results provided by this work, a matching of crashes to infrastructure is
more accurate, beyond what is currently possible using, e.g., OSM repositories. OSM data
quality changes over time with changing tags and completeness, while the aerial imagery
is not affected by these shortcomings. Combining different datasets for more complete
infrastructure overview may be useful. Zurich city’s own bike lane data is incomplete and
required additional manual labeling by the authors to make a comparison with the model
predictions possible. Even though model performance was poor for bike lanes (precision of
about 40 %), the precision relative to the Zurich city data was significantly better (about
77 %) (see Table 2).

6 Limitations, Outlook, and Conclusion

While the results in this work provide useful information for planners and safety-related
studies, there are some shortcomings. First, the machine learning model is not able to
detect separate cycling infrastructure, i.e., cycling paths. This limitation does not strongly
affect analyses in Swiss agglomerations, since cycle paths are rare in these locations.
Other agglomerations, such as in the Netherlands, would be more strongly affected. The
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historical overview is somewhat limited to the years after the 25-centimeter aerial images
were introduced (2005 and later), as the 50-centimeter resolution did not allow labeling or
identification of most cycling infrastructure classes. The resolution changes further affected
the prediction results by introducing artificial jumps in the amount of predictions. Object
occlusion through trees, shadows, cars, etc. also negatively affected the predictions, though
the process of infilling gaps in the predictions mitigated this. The model performance
was overall relatively poor considering the prediction of individual infrastructure classes,
especially linear infrastructures (bike lanes) that could span over several image tiles. A
different modeling approach may be necesary to better predict linear elements. Lastly,
though the model is able to predict presence of cycling infrastructure at the intersection
level, mere presence does not explain the possible impacts on infrastructure safety or
usage. Further data would be necessary to explore the actual contribution made (either
to attractiveness or safety) by expanding cycling infrastructure.

Future work could improve the model for better predictions, specifically of linear elements
such as bike lanes. Subsequent years of images could be grouped together to reduce the
error from object occlusion or false negatives. Additional validation with other external
datasets would be useful to improve the model reliability. Future work should also begin
exploring how these data can be used in analyses of cycling mode shift and subjective
and objective safety.

This work showed how machine learning on aerial imagery can provide a useful overview
of cycling infrastructure development in urban areas. The results are useful to planners
and policymakers who are interested in achieving goals pertaining to increased cycling
modal share. The results also provide useful groundwork for further analyses of subjective
and objective cycling safety, going beyond what is currently available through open source
data such as OSM and official government data.
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9 Glossary

ARE Office for Spatial Development
IoU Intersection over Union
OSM OpenStreetMap
YOLOv8 You Only Look Once, version 8
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A Input Data Overview

Table 3: Overview of agglomeration orthophoto availability and resolution (in centimeters)

2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998

Zurich 10 10 25 25 25 25 50
Genf 10 10 25 25 25 25 50 50
Basel 10 10 10 25 25 25 50 50
Lausanne 10 10 25 25 25 25 50 50
Bern 10 10 10 25 25 25 25 50 50
Winterthur 10 10 25 25 25 25 50
Luzern 10 10 25 25 25 25 50 50
St. Gallen 10 10 25 25 25 25 50
Lugano 10 10 25 25 25 25 50 50
Biel 10 10 10 25 25 25 50 50

B Labels Instances

Table 4: Label counts by class and year

1998 2002 2004 2013 2014 2015 2016 2018 2019 2020 2021 2022 2023

advanced_retaining_bar 0 0 28 5 24 21 54 39 21 13 31 14 7
bike_lane 192 163 201 118 278 225 326 174 177 168 325 186 109
bike_pictogram 25 1 84 64 94 252 220 192 123 241 279 54 126
bike_stopping_space 0 0 13 3 4 22 21 7 7 32 24 5 13
circle 0 8 11 14 2 12 20 6 3 6 6 2 5

crosswalk 1358 168 810 273 305 316 475 313 257 243 338 120 87
pedestrian_island 271 51 173 55 62 68 85 49 43 33 77 38 12
red_colored_bike_lane 9 0 14 2 8 27 99 22 13 18 74 11 22
retaining_bar 560 80 343 74 105 180 275 144 133 182 240 67 75
shark_teeth 17 62 302 90 120 97 172 126 90 38 135 63 48

Table 5: Label counts by class and agglomeration

Basel Bern Biel Genf Lausanne Lugano Luzern St. Gallen Winterthur Zurich

advanced_retaining_bar 25 56 37 22 17 8 30 15 13 34
bike_lane 298 379 208 254 349 88 217 242 201 406
bike_pictogram 308 242 91 376 261 47 95 49 60 226
bike_stopping_space 6 42 6 12 54 2 11 6 6 6
circle 5 27 7 5 13 5 2 3 2 26

crosswalk 774 838 566 535 999 172 145 179 131 724
pedestrian_island 137 163 96 112 203 22 54 51 38 141
red_colored_bike_lane 36 35 1 52 22 5 130 10 14 14
retaining_bar 322 408 213 383 465 102 112 81 64 308
shark_teeth 267 350 94 26 114 91 61 68 75 214

C Prediction Examples
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Figure 3: Raw prediction output: Intersection Lagerstrasse and Langstrasse, Zürich

Figure 4: Raw prediction output: Intersection Museumstrasse, Bahnhofquai and Walche-
brücke, Zürich
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Figure 5: Raw prediction output: Bucheggplatz, Zürich

Figure 6: Raw prediction output: Intersection Hofwiesenstrasse and Wehntalerstrasse,
Zürich

18



Object Detection for Cycling-Specific Infrastructure April 28, 2025

D Raw Prediction Outputs

Figure 7 shows the predicted instances of each type of infrastructure for each agglomeration
over time.

Figure 7: Predicted infrastructure instances per agglomeration, normalized by road length.
Dashed vertical lines show the year in which the aerial image resolution was upgraded
(from 50 to 25 to 10 centimeters)

E Further Analysis at the Intersection Level

Figure 8 shows the share of major intersections without bike pictograms for each agglom-
eration by settlement type (core urban area, urban area, periurban area). Bike pictograms
was chosen as the proxy for cycling infrastructure presence since pictograms are relatively
ubiquitous in all agglomerations. In general, more urban areas have fewer intersections
with no cycling infrastructure, with a decreasing trend over time for all agglomerations.
Geneva has the fewest intersections without pictograms in all settlement areas. Luzern
performs relatively better in periurban areas than the other agglomerations.
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Figure 8: Share of major intersections with no bike pictograms by settlement type

Figure 9 shows the share of major intersections without bike pictograms for each agglom-
eration by road ownership (communal, cantonal, federal). In general, federal roads have
fewer intersections with no cycling infrastructure, with a decreasing trend over time for
all roads. As before, Geneva has the fewest intersections without pictograms. The range
between all the agglomerations is similar for all roads (about 40 %), but Geneva’s lead is
less pronounced for federal roads.

Figure 9: Share of major intersections with no bike pictograms by road ownership
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