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Abstract

Deep learning (DL) networks are increasingly utilized in mobility analysis and predictive
modeling, yet their intricate internal workings hinder interpretability and complicate
robustness assessments, limiting real-world deployment. Recent studies identified causal
inference as a promising method for evaluating DL robustness, as it enables the extraction
of interpretable and actionable insights. This study introduces a causal intervention
framework to assess how mobility-related factors influence DL networks for next-location
prediction. We employ mechanistic mobility models to simulate location visit sequences
and control behavioral dynamics through targeted interventions in data generation. The
modified sequences are analyzed using standardized mobility metrics and processed through
pre-trained DL networks to quantify performance variations. Performance deviations
highlight three key behavioral factors: (1) sequential patterns in location transitions, (2)
individual tendencies for spatial exploration, and (3) heterogeneity in location preferences
at both the population and individual levels. We publicly released a modular, open-
source Python framework that includes formal data specifications, mobility models for
synthetic dataset generation, benchmark DL architectures, and evaluation protocols.
These insights contribute to the practical implementation of mobility prediction systems,
while the framework establishes a foundation for integrating causal inference to improve
DL interpretability and robustness in mobility applications.
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Causal intervention.
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1 Introduction

Accurate individual mobility prediction plays a pivotal role in popularizing emerging
mobility services (Ma and Zhang, 2022) and serves as a crucial backbone for various intel-
ligent transport system functionalities (Tang et al., 2019). In recent years, the availability
of human digital traces and the advancements in data-driven models, particularly deep
neural networks, have significantly enhanced mobility prediction ability (Wang et al.,
2022). Despite their solid predictive performance, modern neural networks often face
criticism for their low interpretability (Manibardo et al., 2022; Pappalardo et al., 2023),
referring to the degree to which humans can comprehend the decision-making process of a
model. These networks are commonly regarded as “black boxes” because reconstructing
the reasoning behind a particular prediction is challenging.

In mobility prediction, the lack of interpretability leads to an unclear understanding of the
spatiotemporal patterns captured by the network and, more fundamentally, the influence of
behavioral factors in prediction. This deficiency negatively affects decision-making, policy
design, and the perceived reliability and trustworthiness among practitioners (Huang
et al., 2020), thereby impeding the seamless integration of mobility prediction networks
into real-world applications (Koushik et al., 2020). Furthermore, the scarcity of publicly
available individual mobility datasets leads to a lack of comparability between existing
and newly developed prediction models (Graser et al., 2023). Prediction networks are
evaluated using datasets that include varying numbers and types of participants, along
with differing tracking durations, representing diverse snapshots of the possible mobility
behavior (Kulkarni and Garbinato, 2019). Hence, a comprehensive analysis connecting
behavior dynamics with prediction performance is imperative to establish benchmark data
specifications for evaluating mobility neural networks.

Establishing the behavior and performance connection assists in evaluating network
robustness when confronted with unforeseen inputs. The optimization of networks requires
a training dataset, making their performance heavily dependent on the quality and
representativeness of this data (Yin et al., 2022). However, mobility behavior evolves
dynamically over space and time. The data encountered during application often reflects
different behavior than the training data, leading to a discrepancy known as domain
shift (He et al., 2020). Enhancing our understanding of performance under various shift
scenarios is essential to assessing reliability when applying these networks across diverse
geographic regions or periods. Yet, this relationship remains predominantly unexplored.

Causal intervention offers a promising tool for generating data from diverse environments,
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enabling robustness assessment and providing human-friendly causal explanations for these
interventions (Xin et al., 2022). Building upon its advantages, we present a framework
for systematically evaluating the impact of mobility behaviors on prediction networks1.
Specifically, we utilize mechanistic models to generate mobility traces, and employ causal
intervention strategies in data generation, allowing for flexible modifications of the defined
mobility behavior. We assess the performance of trained neural networks on these synthetic
traces for mobility prediction. Results show the impact of behavioral factors and provide
benchmarks for mobility prediction networks, with practical applications for evaluating
network performance and transferring these networks across environments.

2 Methods

The overall pipeline for assessing the robustness of prediction networks is illustrated in
Figure 1.

Figure 1: Evaluating the robustness of prediction networks through causal interventions.
We generate location sequences from mechanistic models and feed them into prediction
networks to evaluate the prediction performance (blue arrows). This process is repeated
for interventional location sequences, obtained by modifying the distribution of behav-
ioral parameters (green arrows). The differences in mobility patterns and prediction
performances are compared to assess intervention strengths and network robustness (red
arrows).

1The source code is available at https://github.com/irmlma
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2.1 Individual mobility models

Individual mobility models generate realistic trajectories based on a predefined set of
behavioral parameters, allowing for direct control over the mobility behavior. We introduce
a density transition (DT)-exploration and preferential return (EPR) model, which is based
on two EPR-based (Song et al., 2010a) models, namely density (d)-EPR (Pappalardo
et al., 2015) and individual preferential transition (IPT) (Zhao et al., 2021).

The EPR model introduced two competing mechanisms, namely, exploration and prefer-
ential return (Song et al., 2010a). Specifically, observing an individual at location i at
time t, the model assumes that the individual will change their location after a waiting
time ∆t, where ∆t is sampled from its distribution P (∆t). They chooses to explore a
previously unvisited location with probability pnewt :

pnewt = ρS−γ
t (1)

where 0 < ρ ≤ 1 and γ ≥ 0 are parameters that control the exploration tendency and
St denotes the number of distinct location visited until time t. During this process, the
d-EPR model assigns population attractiveness factors to locations to model the tendency
to visit popular locations. The probability Πj of selecting location j depends on the travel
distance and location attractiveness:

Πj ∝ njr
−2
i,j (2)

where ri,j is the distance between the current location i and the new location j, and
nj denotes the attractiveness, quantified as the empirical visits to location j. After the
move, the number of visited locations increases from St to St + 1. Besides exploring a
new location, the individual could return to a visited location with a complementary
probability 1 − pnewt . In this case, the IPT model defines the probability of moving to
location j to be proportional to the previous visit frequency from location i to j:

Πj ∝ fi→j (3)

where fi→j is the empirically observed visitation frequency from i to j, which collectively
forms the Markov transition matrix F . We combine the exploration mechanism of d-EPR
and the preferential return mechanism of IPT to introduce the DT-EPR model. As a
result, for each individual ui, DT-EPR generates a time-ordered trajectory T i = (Lk)

mui

k=1

composed of mui locations visited by ui. A location L contains spatiotemporal information
and is represented as a tuple of L = ⟨l, p, t⟩, where l is the location identifier, p = ⟨x, y⟩
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represents spatial coordinates in a reference system, e.g., latitude and longitude, and t is
the time of visit.

2.2 Intervention design

We use empirically estimated behavioral parameters to generate observational mobility
traces, and introduce causal interventions to the data-generating process to simulate
interventional mobility trajectories. Causal interventions can be interpreted as shifts in
the observed mobility patterns, representing scenarios such as spatial shifts when certain
locations become more attractive or temporal shifts in mobility behavior between seasons.
We perform interventions on the following parameters:

• The exploration tendency pnew, affecting whether or not to explore in the next
time step (Eq. 1). In EPR-like models, pnew is determined by parameters ρ and
γ, independently sampled for each individual. We introduce interventions on ρ

and γ by altering their distributions, producing pseudo-populations with different
exploration behaviors. Additionally, we perform hard interventions on pnew by fixing
its value to a constant.

• The population attractiveness n, affecting location choices during exploration (Eq. 2).
We manipulate location attractiveness to simulate changes in the population’s
spatial preferences. To retain location visitation characteristics, we randomly shuffle
empirical visit numbers for a group of locations. The strength of the intervention
can be controlled by adjusting the group of locations, e.g., including more locations
in the shuffling process introduces a more substantial intervention.

• The empirical individual preference f , affecting location choices during preferential
return (Eq. 3). We introduce interventions by manipulating the personalized Markov
transition matrix, achieved by shuffling the empirical visit numbers for a group of
locations, which maintains the overall number of visits while altering the choice
probabilities for each location. The strength of the intervention is controlled by
selecting the location group to include in the shuffling process.

For each intervention, the DT-EPR model generates interventional mobility trajecto-
ries T̃ i = (Lk)

mui

k=1 for individual ui ∈ U , which share an identical data format as the
observational mobility traces T i.
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2.3 Next location prediction networks

To assess the influence of causal interventions, i.e., the impact of changes in mobility
behavior, we evaluate the predictive capability of a neural network trained on observational
data but tested on interventional data. We choose next location prediction as the
application task. Consider a sub-sequence (Lk)

n
k=m ∈ T i visited by individual ui from time

step m to n, the goal is to predict the next visited location, i.e., the location identifier ln+1.
We employ LSTM and MHSA-based networks for next location prediction and refer readers
to Solomon et al. (2021) and Hong et al. (2023) for their detailed implementation.

3 Results

We leverage a smartphone-based travel survey to calibrate the parameters for mechanistic
mobility models. The survey was conducted by the Swiss Federal Railways (SBB), known
as the SBB Green Class (GC) E-Car pilot study, which aimed to assess the impact of a
Mobility-as-a-Service (MaaS) offer on travel behavior (Martin et al., 2019). The pilot study
yielded a large-scale longitudinal GNSS tracking dataset from 139 participants located in
Switzerland, spanning from November 2016 to December 2017. Participants were asked
to install a commercial application on their smartphones, continuously recording their
whereabouts from GNSS signals. The application pre-processed the raw traces to identify
stay points representing areas where users were stationary, which were later spatially
aggregated into locations, the basic study units for mechanistic mobility models, using the
Trackintel library (Martin et al., 2023).

We estimated the waiting time distribution P (∆t) using a log-normal fit, yielding best-fit
parameters µ|∆t = 0.75 and σ|∆t = 1.49. To assess exploration tendencies P (ρ) and P (γ),
we calculated the location exploration speed and fit normal distributions across individuals.
This resulted in µ|ρ = 0.18, σ|ρ = 0.07 and µ|γ = 0.64, σ|γ = 0.16, respectively. These
parameters were employed to simulate traces for 800 individuals, both in the observational
dataset and in each interventional dataset. For each synthetic individual, we independently
sample values for ρ and γ, and randomly assign an initial location from their empirically
observed top-5 most visited places. The simulation process proceeded until each individual
had visited 2000 locations.
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3.1 Mobility simulation and intervention

Figure 2 shows the distributions of mobility entropy (Song et al., 2010b), which capture
the regularity of mobility patterns. These metrics are presented for both observational
and interventional location sequences generated by DT-EPR.

Figure 2: The mobility entropy of observational and interventional location sequences.
We show the distributions for (A) hard interventions on pnew, (B) interventions on ρ by
shifting µ|ρ of P (ρ), and (C) interventions on γ by shifting µ|γ of P (γ).

The interventions can effectively and directionally change the underlying mobility pattern,
as demonstrated by the shifts in the mobility metric distributions. For example, with
an increase in the exploration tendency pnew, individuals are encouraged to visit new
locations, leading to mobility sequences with higher entropy. Moreover, the impact on the
generated location sequences can be compared among the different interventions. While
intervening on the exploration tendency pnew significantly alters the mobility patterns
(Figure 2A), changes induced by exploration parameters ρ and γ are more nuanced and
provide more fine-grained control (Figure 2B and C).

3.2 Robustness of location prediction networks

We now evaluate the performance of prediction networks using interventional mobility
sequences, which reveal their robustness in out-of-distribution (OoD) scenarios, i.e., when
the training and testing data are not generated from the same distribution. Figure 3
displays the variations in Acc@1 scores for interventions on exploration tendency, and
Figure 4 depicts variations for interventions on population attractiveness and individual
preference. Although similar performance trends are observed for both networks, LSTM
consistently outperforms MHSA in OoD settings.
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Figure 3: Next location prediction performances for interventions on individuals’ explo-
ration tendency. We show the variations in Acc@1 for (A) hard interventions on pnew, (B)
interventions on ρ by shifting µ|ρ of P (ρ), and (C) interventions on γ by shifting µ|γ of
P (γ).

Figure 4: Next location prediction performances for interventions on population attrac-
tiveness and individual preference. We show the variations in Acc@1 for (A) randomizing
empirical location visits of the dataset, and (B) randomizing empirical location visits for
each individual.

The performance variations for exploration interventions (Figure 3) generally align with
their strengths and directions, but we also observe non-linear relations between intervention
strength and prediction performance. In particular, the hard interventions on pnew

significantly influence the prediction capability. Setting pnew > 0.5 results in Acc@1
< 10%, suggesting that the learned location transition patterns cannot be adequately
utilized. Comparatively, interventions on γ and ρ indirectly affect pnew, which retains
the diminishing exploration speed over time. Influences on next location prediction are
milder, e.g., the Acc@1 still achieves ∼ 18% with the strongest implemented interventions
(µ|ρ = 0.9 and µ|γ = 0.1). Moreover, we observe the prediction performances are relatively
stable for µ|ρ ∈ [0.1, 0.3] and µ|γ ∈ [0.5, 0.9], even though the location sequences continue to
exhibit lower mobility entropy (Figure 2). This saturation suggests that even if individuals
explore new locations at a lower rate, many location visit patterns are inherently stochastic
and complex, making them challenging to capture by a trained network.

Interventions on population attractiveness and individual preference reveal how altering
visit frequencies affects the prediction performances. In the shuffling process, “top 1%”
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includes the most frequently visited 1% of locations across the population (Figure 4A),
and “top 3” considers the three most visited locations for each individual (Figure 4B). Both
types of interventions substantially impact the prediction ability, with altering the number
of visits separately for each individual showing a stronger influence, as evidenced by the
higher drop in performance indicators. Even changes in preference for a few most critical
locations (e.g., “top 0.1%” for location attractiveness or “top 3” for individual preferences)
result in a significant prediction capability decrease. On the contrary, intervening on a
large portion of locations that are not frequently visited (i.e., “last 30%” and “last 60%” for
location attractiveness) has minimal impact on the prediction performances. These results
emphasize the indispensable role of essential locations in shaping daily mobility and reveal
their relation with the generalization ability of next location prediction networks.

3.3 Open-source framework

We open-sourced the framework to support the evaluation of deep learning models’
robustness in mobility analysis. Our implementation adheres to ODTP guidelines, which
aim to enable the study of interventions in mobility systems through a digital representation
of the real world (Grübel et al., 2023). This digital twin captures essential characteristics
needed to describe and analyze observable processes for specific tasks, ultimately supporting
informed decision-making and, when appropriate, the actuation of physical systems based
on these insights. ODTP provides a comprehensive framework for designing, managing,
executing, and sharing digital twins. It includes command-line and graphical user interfaces,
ensuring seamless operation and management. Furthermore, ODTP features a “zoo”
repository of modular components, streamlining the efficient creation and recreation of
digital twins.

The framework has been open-sourced2, and the components and structure of the im-
plementation3 are shown in Figure 5. The pipeline can be hosted locally using Docker
Compose, featuring data access controls that support both CSV files for non-sensitive
data and a PostGIS data loader for securely importing sensitive movement data via the
database. These input data are compatible with existing microscopic mobility simulators
(such as DT-EPR), enabling users to define multiple parameter sets for causal interven-

2Available at https://github.com/odtp-org/dt-mobility-causal-intervention
3A complete documentation of the implementation, along with step-by-step instructions

for execution, can be found at https://odtp-org.github.io/odtp-manuals/usecases/
mobility-causal-interventions/
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Figure 5: Components and pipeline of the robustness evaluation framework implemented
within ODTP.

tion on mobility behaviors. Users can then leverage the mobility metrics component to
comprehensively evaluate the mobility behaviors captured in the synthetic sequences. The
framework also supports training next location prediction deep neural networks, either
from scratch using designated training datasets or by evaluating pre-trained models using
specified validation data. To assess robustness, we provide standard performance metrics
alongside uncertainty evaluation scores attached to the predictions (Dirmeier et al., 2023).
Additionally, we include a visualization component named pyGWalker, which provides a
graphic user interface for exploring the result.

4 Conclusion

Unraveling the role and impact of mobility behavior on prediction outcomes is imperative
to the real-world application of mobility prediction systems. Here, we present a framework
to examine how behavioral factors influence mobility prediction networks through causal
interventions. Using mechanistic mobility models, we perform causal interventions on their
parameters to generate mobility traces that mirror real-world behavior variations. Quanti-
tative evaluation using mobility metrics demonstrates our capability to effectively and
deliberately modify behaviors. Subsequently, we evaluate these interventional traces with
well-trained networks for the next location prediction task, and the resulting performance
variations indicate the robustness of networks confronting domain shifts. Our results reveal
vital behavior factors affecting prediction performance, including the tendency to explore
new locations and location preferences at both population and individual levels. We
open-sourced the framework following ODTP guidelines, ensuring the use of standardized,
extensible components that adhere to high software development standards.
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