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Abstract

Maximum simulated likelihood estimation (MSLE) is inherently complex due to the pres-
ence of multiple local maxima, which hinder standard optimization methods. One solution
is to reformulate MSLE as a mixed-integer linear program (MILP), enabling the use of
combinatorial techniques to obtain globally optimal solutions. However, this approach
introduces two difficulties: (1) the reliance on simulation-based approximation, which is
unavoidable when dealing with continuous mixtures and does not pose a fundamental
limitation, and (2) the computational intractability of large-scale instances. To address
the latter, we adapt the Breakpoint Heuristic Algorithm (BHA), originally developed
for choice-based pricing, which has proven effective in solving similar MILPs with high
accuracy and reduced computational time. The resulting method, the BHA for MSLE
(or BHAMSLE for short), exploits the problem’s combinatorial structure by identifying
decision-making breakpoints in a coordinate descent framework. Numerical experiments
show that BHAMSLE significantly outperforms state-of-the-art global optimization meth-
ods that do not exploit this structure. Our approach delivers strong initialization points
for estimation, yielding higher log-likelihoods, more stable and interpretable estimates,
and improved recovery of latent segments, even in models with mixed parameters and
restricted choice sets.
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1 Introduction

The estimation of a discrete choice model (DCM) involves determining coefficient values
that maximize the log-likelihood of the observed data. This process typically begins
with initializing the coefficients, followed by iterative updates through an optimization
algorithm until a predefined convergence criterion is met. Consequently, the initialization
of coefficients—along with the chosen algorithm—directly influences the trajectory of the
estimation process. For widely used models such as the logit, nested logit, and continuous
mixtures of logit, this initialization rarely poses a significant issue. In the case of a logit
model (and a nested logit with valid nest parameters), the likelihood function can even be
shown to be concave, guaranteeing a unique global optimum.

Over the past decade, discrete mixture (or latent class) models have gained significant
traction as a powerful framework for capturing unobserved heterogeneity in choice behavior.
By explicitly segmenting the population into distinct latent groups, these models allow for
the estimation of class-specific preference structures. Unlike continuous mixing approaches,
discrete mixtures offer a more interpretable structure by associating individuals with
discrete behavioral profiles, each assigned a probability of membership. This makes
them a compelling alternative for analyzing preference heterogeneity while maintaining
computational efficiency (Greene and Hensher, 2003; Boxall and Adamowicz, 2002).
Despite these advantages, a major challenge of discrete mixtures is that they are prone to
exhibit a multitude of local optima. Certain model specifications can result in hundreds
of potential solutions, making the identification of a globally optimal set of parameters
difficult (Peer et al., 2016). As a result, the initialization of the coefficients and the specific
estimation algorithm used heavily influence the identified solution.

For more advanced discrete choice models, such as continuous and discrete-continuous
mixture models (latent class models with one or more continuous mixtures), the estimation
challenge becomes even more pronounced. Unlike standard latent class models, these
models lack closed-form expressions for choice probabilities, necessitating the use of
simulation-based techniques like maximum simulated likelihood estimation (MSLE) (Train,
2003). When combined with the prevalence of multiple local optima, this reliance on
simulation introduces a significant computational burden, further complicating the search
for globally optimal parameters. As a result, the estimation of these models is not only
sensitive to initialization but also requires robust optimization techniques to navigate
their highly irregular likelihood landscapes.

To tackle the issue of numerous local optima, one possible approach is to perform
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multiple estimations with diverse initializations. Jung and Wickrama (2008) emphasize
the prevalence of local solutions in discrete mixture modeling and advocate for repeated
random initialization as a necessary practice. Alternatively, rather than relying on
computationally demanding repeated estimations, one can focus on developing more
effective strategies for selecting initial values. A well-chosen starting point can mitigate
the risk of convergence to suboptimal solutions and improve both the efficiency and
reliability of the estimation process, whereas poor initialization can lead to convergence
failures, suboptimal likelihood values, or even class misidentification, ultimately affecting
the interpretability and validity of the estimated model. Amongst others, Lubke and
Muthén (2005) underscore the need for systematic approaches to improve initialization
strategies, as better starting points can significantly enhance estimation stability and
reduce computational costs.

In complex optimization problems characterized by numerous local optima and reliance
on simulation-based evaluations, heuristic global optimization methods have been widely
applied. One such approach is the Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) (Hansen et al., 2003), a stochastic, population-based algorithm designed for
black-box optimization. CMA-ES belongs to the family of evolutionary strategies and
adapts the covariance matrix of its search distribution, enabling efficient exploration
of high-dimensional, irregular objective functions. The algorithm iteratively samples
candidate solutions from a multivariate normal distribution, updating its parameters
based on their fitness to progressively guide the search toward the global optimum.
Its versatility and robustness make it particularly well-suited for optimization tasks
involving nonconvexity, noise, or simulation-based function evaluations. Other heuristic
approaches proposed for global optimization include the variable neighborhood search
(VNS) framework combined with a trust-region algorithm introduced by Bierlaire et al.
(2010), which balances diversification and intensification to efficiently locate the global
minimum, and Particle Swarm Optimization (PSO) (Eberhart and Kennedy, 1995), which
models solution candidates as a swarm moving through the search space based on social
and cognitive influences.

While these broad methods have demonstrated strong performance across a range of
optimization problems, they are not specifically tailored to discrete choice models and
therefore do not fully exploit the structure inherent to such problems. A general solu-
tion approach developed for simulated maximum likelihood estimation specifically was
introduced by Fernandez Antolin (2018), framing the problem as a mixed-integer linear
program and demonstrating that MSLE can be seen as a choice-based optimization prob-
lem. Traditionally, such problems integrate a DCM to account for stochastic behavior
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within an optimization context, often targeting endogenous parameters, such as the price
of a product, to maximize revenue or other metrics. In the case of MSLE, one instead
assumes fixed choice attributes, with the choice model parameters taking on the role of
the decision variables, maximizing the simulated likelihood as the objective function. This
perspective bridges a gap between choice-based optimization techniques and simulated
likelihood estimation, suggesting potential for cross-applications between the two.

Rewriting the problem as a MILP offers the key benefit of ensuring a globally optimal
solution. Nonetheless, this reformulation introduces certain difficulties. One is the need
for simulation-based approximations—an unavoidable step when working with continuous
mixtures, and thus not a fundamental drawback. A more pressing issue is the difficulty of
solving large-scale instances exactly due to computational complexity. To address this, we
develop a heuristic method that efficiently generates high-quality approximate solutions.
These can be used as strong starting points for Newton-type algorithms, which can then
further refine the solution and improve the chances of reaching a better local optimum, or
even the global one.

To achieve this, we adapt the Breakpoint Heuristic Algorithm (BHA), originally introduced
by Haering et al. (2024) for choice-based pricing. The BHA has demonstrated the ability to
efficiently solve similar MILPs with high accuracy in significantly reduced computational
time. The algorithm systematically explores local optima by identifying decision-making
breakpoints and can be categorized as a coordinate descent method. Motivated by its
effectiveness, we propose an adaptation of BHA tailored to the MSLE problem, termed
the Breakpoint Heuristic Algorithm for MSLE (BHAMSLE). By explicitly exploiting the
structure of choice models, the algorithm is designed to generate promising initializations
for the estimation of discrete mixture models, directly addressing the challenge of numerous
local optima. To evaluate its effectiveness, we compare its performance in computing
high-quality starting points against CMA-ES, using the latter as a benchmark for global
optimization. By contrasting these approaches, we aim to demonstrate that our heuristic
reliably identifies superior solutions and is able to recover underlying structures in the data
in a reasonable amount of time. This contribution is intended to advance the practical
applicability of discrete mixture models, making them more accessible for complex, real-
world datasets.

Four test series are performed on a set of discrete and discrete-continuous mixture model
estimation problems, where we assess the performance of BHAMSLE vs. CMA-ES as
initialization tools for Biogeme, compared to the standard initialization. The remainder
of the paper is organized as follows: Section 2 outlines the problem setting and presents
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the MSLE problem as a MILP. Section 3 describes BHAMSLE, while Section 4 reports
on the case study and computational experiments. Finally, Section 5 offers concluding
remarks and essential takeaways.

2 Problem formulation

In this section, we elaborate on the difficulties in latent class model estimation using a
concrete example and give the problem formulation for MSLE as a MILP, specifically
for the case of discrete-continuous mixtures, as here the added value of our approach is
particularly significant. We thus assume that the model specification is a latent class
model, where some parameters are distributed across the population. However, it is
important to emphasize that the framework is general and can be used for any DCM.

2.1 Latent class choice models

Latent class choice models, or discrete mixtures, are a popular specification within
the family of discrete choice models, used to account for unobserved heterogeneity in
preferences. Rather than assuming a single set of parameters applies to the entire
population, discrete mixtures posit that the population is composed of a finite number of
segments—referred to as latent classes—each with its own taste parameters. The class
membership of each individual is unobserved and must be inferred from the data.

The input to such models consists of a dataset containing observed choices made by a sample
of individuals, along with the values of explanatory variables such as alternative attributes
and individual characteristics. A model specification defines how these explanatory
variables are mapped to choice probabilities, conditional on a set of parameters that must
be estimated. The estimation procedure then yields as output the parameter values that
maximize the likelihood of the observed data under the model, as well as the relative size
(or probability) of each latent class in the population.

To illustrate, consider a simple mode choice model with two alternatives—car and bus—and
one explanatory variable: travel time. Each individual is assumed to belong to one of
two latent classes, each characterized by a different sensitivity to travel time. Class
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membership is assigned based on directly estimated probabilities, without the influence of
any explanatory variables. The deterministic utility for alternative j is specified as the
product of a class-specific coefficient β(s)

time and the travel time of that alternative. That is,
we assume the following deterministic utilities:

V
(1)
car = β

(1)
time · traveltimecar,

V
(1)
bus = β

(1)
time · traveltimebus,

V
(2)
car = β

(2)
time · traveltimecar,

V
(2)
bus = β

(2)
time · traveltimebus.

We assume that each class follows a standard logit model, and that class membership
probabilities are fixed, with π denoting the probability of belonging to class 1 (and 1− π

for class 2). The probability of observing a given choice is then obtained by averaging
over the two classes:

Pn = π · P (1)
n + (1− π) · P (2)

n ,

where P
(s)
n denotes the choice probability under class s. A well-known challenge with

latent class models is the non-convexity of the log-likelihood function. Due to the discrete
structure of class membership and the interaction with continuous taste parameters, the
likelihood surface may exhibit several local optima. As a motivating example, we construct
a synthetic dataset and visualize the likelihood surface to highlight the multimodal nature
of the objective and the interaction between taste parameters and class probabilities.

The synthetic dataset was created to reflect three qualitatively distinct behavioral patterns.
The first segment, referred to as the rational group, consists of 18 individuals who
consistently choose the faster alternative in each choice scenario. This group represents
behavior that aligns with the compensatory logic of the logit model, where shorter
travel time is always preferred. The second group, called the irrational group, includes
10 individuals who consistently prefer the slower alternative (which may reflect the
presence of unobserved factors influencing choice behavior). This introduces a systematic
violation of compensatory behavior and creates conflict within the likelihood function
that can only be reconciled through latent segmentation. Finally, an ambiguous group
of 6 individuals was included to introduce additional complexity. These individuals are
exposed to symmetric or nearly symmetric alternatives and exhibit mixed or inconsistent
choice behavior, thereby smoothing the likelihood surface and preventing sharp, unrealistic
peaks. This configuration creates a meaningful contrast in behavior across the population
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while avoiding the use of random sampling. The rational group dominates slightly to favor
negative coefficients for one class, while the irrational and ambiguous groups introduce
noise and identifiability challenges.

Table 14 in Appendix A provides the complete dataset used to evaluate the log-likelihood,
which was computed over a dense grid of parameters β

(1)
time, β

(2)
time, and π. The resulting

surface is shown in Figure 1, with the log-likelihood values visualized via color. We observe
multiple distinct regions in parameter space with high likelihood values, illustrating the
nonconvexity of the estimation problem. Such a landscape can trap local optimization
methods, such as gradient-based or Newton-type algorithms, in suboptimal solutions,
depending on the initialization.

Figure 1 – Log-likelihood surface for a latent class model with two classes and
a single explanatory variable (travel time). β

(1)
time and β

(2)
time denote class-specific

travel time sensitivities, and π the membership probability for class 1 .
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2.2 Mathematical formulation of MSLE as a MILP

Consider a set N = {1, . . . , N} of individuals, each choosing exactly one alternative
amongst a set of choices I = {1, . . . , J}. An individual may have access to only a subset of
these alternatives, indicated by their choice set Cn ⊂ I. The observed choice for individual
n ∈ N is denoted by yn ∈ I. For all n ∈ N, each alternative is assigned a stochastic
utility Uin, composed of a deterministic component Vin and a random error term εin. The
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deterministic component is represented by the linear combination of alternative attributes
and socio-economic characteristics, also referred to as explanatory variables, xink (where
k ∈ K = {1, . . . , K} indexes the set of all such factors) with the parameters βk that
are to be estimated. In discrete mixtures, or latent class models, the analyst tests the
hypothesis that the population of individuals can be divided into a set of latent classes
S = {1, . . . , S}, each characterized by distinct preferences. The available alternatives, the
considered attributes and characteristics, and the parameters to be estimated may vary
entirely across classes. This yields class-dependent utilities U s

in, given by:

U s
in = V s

in + εin =
∑
k∈Ks

xinkβk + εin, ∀n ∈ N, s ∈ S, i ∈ Cs
n,

where V s
in represents the deterministic utility component, Ks the set of attributes and Cs

n

the choice set of individual n for class s ∈ S. We furthermore assume that each individual
selects the alternative corresponding to the maximal utility.

To estimate the individual latent class probabilites πns, n ∈ N, s ∈ S, which may depend
on explanatory variables, we similarly define scoring functions fns for every individual
n ∈ N and latent class s ∈ S. Each scoring function consists of a deterministic component
fd
ns, containing parameters αl, l ∈ L = {1, . . . , L} that require estimation, as well as a

stochastic error term δns:

fns = fd
ns + δns =

∑
l∈L

xnslαl + δns, ∀n ∈ N, s ∈ S.

In order to ensure that we can identify a set of probabilities that satisfies
∑

s πns = 1 ∀n ∈
N, it is necessary to normalize one scoring function to be equal to 0. Given a set of utility
and scoring functions, we can then derive the probabilities as follows. For an individual n
to select alternative i, given their membership in class s, the probability is given by:

P s
in = P(U s

in ≥ U s
jn, ∀j ∈ Cs

n), ∀n ∈ N, s ∈ S, i ∈ Cs
n.

Similarly, the latent class probabilities πns are expressed as:

πns = P(fns ≥ fnt, ∀t ∈ S), ∀n ∈ N, s ∈ S.

The unconditional probability Pin of individual n choosing option i is then described by:

Pin =
∑
s∈S

πnsP
s
in, ∀ n ∈ N, i ∈ Cn.
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We can now write the optimization problem in its stochastic form:

max
β,π

∑
n∈N

ln

(∑
s∈S

πnsP
s
ynn

)
(1)

s.t.∑
s∈S

πns = 1, ∀n ∈ N, (2)

U s
in =

∑
k∈Ks

xinkβk + εin, ∀n ∈ N, s ∈ S, i ∈ Cs
n, (3)

fns =
∑
l∈L

xnslαl + δns, ∀n ∈ N, s ∈ S, (4)

P s
in = P(U s

in ≥ U s
jn, ∀j ∈ Cs

n), ∀n ∈ N, s ∈ S, i ∈ Cs
n, (5)

πns = P(fns ≥ fnt, ∀t ∈ S), ∀n ∈ N, s ∈ S, (6)

βk, αl ∈ R, ∀k ∈
⋃
s∈S

Ks, l ∈ L.

The objective function in equation (1) seeks to maximize the log-likelihood of the observed
choices. The first constraint in equation (2) ensures that the class membership probabilities
sum to one for all individuals, guaranteeing a valid probability distribution over classes.
Equations (3) and (4) define the utility and scoring functions U s

in and fns for each class s,
individual n and alternative i ∈ Cs

n, as described above. Finally, equations (5) and (6)
specify the choice probabilities P s

in and latent class probabilites πns.

The latter constraints may present a significant challenge, as the probabilities P s
in and

πns do not have a closed-form expression for certain discrete choice models (for example
in continuous mixtures). This issue is typically addressed through simulation techniques
(Train, 2003). By generating random draws from known distributions, Monte Carlo
simulation can be employed to approximate these probabilities. A general approach
for modeling maximum likelihood estimation of arbitrary discrete choice models in a
linearized form was proposed by Fernandez Antolin (2018), who formulated the problem as
a mixed-integer linear program. We follow a similar approach, extending their framework
to discrete and discrete-continuous mixture models.

Let’s first address the simulation procedure for a standard error component model,
as described in Fernandez Antolin (2018). The key idea is to obtain a deterministic
representation of the utility function by simulating the stochastic error terms. Specifically,
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for each individual n ∈ N and choice alternative i ∈ Cn, the utility function is given by

Uinr =
∑
k∈K

xinkβk + εinr, ∀n ∈ N, i ∈ Cn, r ∈ R,

where εinr represents a random draw from the error term distribution. For instance, in a
logit model, the error term follows a Gumbel distribution. The index r ∈ R = {1, . . . , R}
represents different simulation scenarios. Having a deterministic utility representation
allows us to define choice variables per individual, alternative, and scenario:

ωinr =

1, if Uinr ≥ Ujnr, ∀j ∈ Cn,

0, otherwise,
∀n ∈ N, i ∈ Cn, r ∈ R.

These choice variables enable us to approximate the choice probabilities using an unbiased
estimator (Train, 2003):

Pynn ≈
1

R

∑
r∈R

ωynnr,

which leads to the following approximation of the objective function:

max
β,πs

∑
n∈N

ln
(
Pynn

)
≈
∑
n∈N

ln
( 1

R

∑
r∈R

ωynnr

)
= −NR +

∑
n∈N

ln
(∑

r∈R

ωynnr

)
.

In order for the objective to be fully linear, we need to deal with the natural logarithm
around the sum of choice variables. This can be achieved through a piece-wise linearization.
We refer to Appendix B.1 for more details. Furthermore, Fernandez Antolin (2018) also
provide an extension to nested logit models. Our contribution generalizes this approach to
any mixture model, extending the methodology to both discrete and continuous-discrete
mixture models.

Let’s now address the simulation procedure for continuous mixture models. Here, the
utility function involves random elements. Those elements include the error term itself,
but also distributed parameters. We assume the distributions of those random elements to
be known, and that it is possible to generate instances in order to perform simulation. We
present the formulation in case of a set of normally distributed parameters βm,m ∈M ⊂ K.
For each simulation scenario r ∈ R and individual n ∈ N, we take a draw σnr from the
standard normal distribution N(0, 1) and define:

βm = βm,1 + βm,2σnr ∀m ∈M

12



BHAMSLE: Heuristic Likelihood Estimation May 21, 2025

Here, βm,1 represents the mean and βm,2 the standard deviation of the normal distribution.
We can then describe the deterministic utility Uinr as:

Uinr =
∑

k∈K\M

xinkβk +
∑
m∈M

xinmβm + εinr ∀n ∈ N, i ∈ Cn, r ∈ R. (7)

For discrete and discrete-continuous mixture models, an additional simulation layer is
required to determine latent class membership. To this end, the random error terms δns

of the scoring functions fns are also simulated, yielding deterministic functions fnsr for
each scenario r:

fnsr =
∑
l∈L

xnslαl + δnsr ∀n ∈ N, s ∈ S, r ∈ R. (8)

where δnsr represents a random draw from the error term distribution. Now, in each
scenario, the class assignment is fully deterministic and given by the maximal scoring
function. Consequently, the utility functions incorporate this latent class allocation as
follows:

Uinr =
∑
s∈S

1[fnsr≥fntr ∀t∈S]U
s
inr, (9)

where U s
inr describes the deterministic utility for a specific class. To incorporate the

variables Uinr and ωinr into a mixed-integer linear program (MILP), it is necessary to
linearize all indicator functions and products. For the sake of readability, we omit the full
derivation of this linearization and the complete description of the MILP for MSLE in the
case of a discrete-continuous mixture model and refer to Appendices B.2 and B.3 for a
detailed exposition.

While solving the MILP formulation guarantees a globally optimal solution, this approach is
limited in practice, as only very small instances can be solved within a reasonable timeframe.
The MILP furthermore introduces the need for simulation—an issue that is not problematic,
as it is unavoidable for continuous mixtures. To address the computational challenge
of solving the MILP formulation, we consider leveraging heuristic approaches inspired
by existing methodologies. The Breakpoint Heuristic Algorithm (BHA), introduced by
Haering et al. (2024) for choice-based pricing, has demonstrated the ability to efficiently
solve a similar MILP with high accuracy in significantly reduced computational time. This
algorithm systematically explores local optima by identifying decision-making breakpoints
and can be categorized as a coordinate descent method. Motivated by its effectiveness, we
propose adapting the BHA to the MSLE problem in the hope of achieving high-quality
approximate solutions efficiently, serving as a strong initialization point for Newton-like
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algorithms, which can further refine the solution and increase the likelihood of converging
to a superior local maximum, if not the global one. This new algorithm is called the
Breakpoint Heuristic Algorithm for MSLE (BHAMSLE), and is presented in the next
section.

3 Methodology

In this section, we introduce BHAMSLE. As for the problem formulation, we illustrate
the algorithm specifically for the case of discrete-continuous mixtures.

3.1 Breakpoint Heuristic Algorithm for MSLE (BHAMSLE)

BHAMSLE capitalizes on the idea of decision-making breakpoints, more specifically “entry”
and “exit” breakpoints for each individual n and scenario r, signifying where the choice
variable ωynnr switches to 1 or back to 0. These breakpoints represent a set of local optima
that can be enumerated. The method can be categorized as a coordinate descent (ascent),
iteratively optimizing one parameter at a time while fixing all others, terminating once
no parameter can be improved further. The full algorithm is described in the following
procedure:

1. Choose a starting point for the estimation, usually, β∗
k = 0 ∀k ∈ K, α∗

l = 0 ∀l ∈ L,
and compute its objective value o∗ = sLL(β∗, α∗).

2. Set j = 1.

3. Fix all parameters with index ̸= j, i.e. βk = β∗
k , k ̸= j and αl = α∗

l , l ̸= j −K.
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4. Compute the set of breakpoints, initialized as B = {}:
for n ∈ N, r ∈ R :

if j ≤ K :
for s ∈ S :

if fnsr ≥ fntr ∀t ∈ S :
Compute the segment [s1, s2] ∋ βj where U s

ynnr(β) ≥ U s
inr(β) ∀i ∈ Cs

n.
Add (s1, n) as an entry breakpoint and (s2, n) as an exit
breakpoint to B.

end

end

else
for s ∈ S :

if U s
ynnr ≥ U s

inr ∀i ∈ Cn :
Compute the segment [s1, s2] ∋ αj where fnsr(α) ≥ fntr(α) ∀t ∈ S.
Add (s1, n) as an entry breakpoint and (s2, n) as an exit
breakpoint to B.

end

end

end

end

5. Sort B in ascending order. Define Σn = |{entry point (x, y) ∈ B : x = −∞, y =

n}|, n ∈ N, o = −N ln(R) +
∑

n ln(Σn) and B ← {(x, y) ∈ B : x ̸= −∞}. Then
evaluate all b ∈ B:
for b ∈ B :

if b is an entry point :
o += ln(Σn + 1)− ln(Σn).

else
o += ln(Σn − 1)− ln(Σn).

end
if o > o∗ :

o∗ = o, if j ≤ K set β∗
j = b, else set α∗

j−K = b.
end

end

6. Set j = j + 1 (if now j = K + S, set j = 1) and repeat from step 3.

7. Terminate when no improvement is found over K + S − 1 iterations.

The algorithm begins by initializing the parameter estimates and computing the initial
simulated log-likelihood (sLL). Each iteration then focuses on optimizing one parameter
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at a time, holding the others fixed. For each parameter update, the algorithm constructs
a set of entry and exit breakpoints by iterating through all individuals and scenarios
and checking where the observed alternative’s utility becomes dominant or ceases to
be dominant. If the current parameter is not part of the scoring functions, the scoring
functions are fixed, and thus, the assigned class is given. We compute the segment of values
of the loose parameter that make the utility of the observed alternative the dominant
one. The start point of the segment is an entry and the end point an exit breakpoint.
If the current parameter belongs to a scoring function, all utilities of alternatives are
fixed, implying that we can compute the classes in which the highest utility belongs to
the observed alternative. We then derive the segment of values the loose parameter can
take that allow the scoring function of these classes to be dominant.

It is worth noting that the algorithm can be slightly simplified if the scoring functions
do not depend on explanatory variables, and instead the latent class probabilities are
estimated directly as parameters. In this case, let γg, g ∈ G = {1, . . . , S − 1} represent
the parameters that separate the unit interval into S partitions P1, . . . , Ps. Furthermore,
draws from the uniform [0, 1] distribution used to simulate class membership are denoted
by unr, n ∈ N, r ∈ R. The starting values here are γ∗

g = g
S
, g ∈ G, and the algorithm

becomes:

1. Choose a starting point for the estimation, usually, β∗
k = 0, k ∈ K, γ∗

g = g
S
, g ∈ G,

and compute its objective value o∗ = sLL(π∗, β∗).

2. Set j = 1.

3. Fix all other parameters βk = β∗
k , k ̸= j and γg = γ∗

g , g ̸= j −K.

4. Compute the set of breakpoints, initialized as B = {}:
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for n ∈ N, r ∈ R :
if j ≤ K :

for s ∈ S :
if unr ∈ Ps :

Compute the segment [s1, s2] ∋ βj where U s
ynnr(β) ≥ U s

inr(β) ∀i ∈ Cs
n.

Add (s1, n) as an entry breakpoint and (s2, n) as an exit
breakpoint to B.

end

end

else
Let g ← j −K.
if unr ∈ [γ∗

g−1, γ
∗
g+1] :

Let W ← {c ∈ {g, g + 1} | U s
ynnr ≥ U s

inr, ∀i ∈ I}.
if W = {g, g + 1} :

Add (−∞, n) as an entry breakpoint to B.
elseif W = {g} :

Add (unr, n) as an entry breakpoint to B.
elseif W = {g + 1} :

Add (unr, n) as an exit breakpoint to B.
end

end

end

end

Steps 5, 6, and 7 are the same as before. Now it holds that for latent class parameters γg,
the entry and exit breakpoints correspond to the draws unr from the uniform distribution,
depending on wether the currently treated parameter allows for the draw to fall into the
interval of a class in which ωynnr is switched to 1 or not. This leverages the structure of
the problem and ensures a balanced distribution of candidate solutions for the latent class
parameter, thereby reducing the likelihood of convergence to extreme values.

Finally, the entry and exit breakpoints are then sorted in ascending order. Subsequently,
the log-likelihood contributions are updated as the algorithm traverses the sorted break-
points, depending on the entry or exit status of the latter. The updated objective value is
compared to the previous best value, and the parameter is updated if an improvement is
found. This process repeats for all parameters sequentially until no further improvement
is achieved after a full pass through all parameters.
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Maintaining information on whether a breakpoint represents an entry or exit for a given
individual n is crucial, as it enables the efficient processing of breakpoints in ascending
order. This allows for the incremental computation of changes in sLL in O(1) time per
breakpoint. In contrast, evaluating the sLL objective function directly at each possible
solution (as a general-purpose global optimization algorithm would) necessitates O(NR)

operations. This distinction results in substantial computational savings, particularly for
large-scale problems.

The algorithm terminates when no further improvements are found in each coordinate.

4 Results and discussion

To test our approach, we perform experiments on four different setups: discrete and
discrete-continuous mixtures of logit with observed vs. synthetically generated choices.
All continuous mixtures use a normal distribution for the mixed parameters, and the
assignment to latent classes is based solely on estimated probabilities, with no explanatory
variables affecting class membership. For each of these four models, we compare using
the standard initialization, the general-purpose global optimization algorithm CMA-ES
(Covariance Matrix Adaptation Evolution Strategy) and BHAMSLE to find a good starting
point for the model estimation using Biogeme. For all initializations, the same set of
draws are used in the estimation. The standard initialization value for all parameters is 0,
except for the standard deviations in continuous mixtures of logit, which are initialized
to 1, and the latent class probabilities, which are initialized to equal probabilities. We
employ the CMA-ES implementation provided by the Evolutionary.jl package in Julia,
with hyperparameters selected to emphasize finding high-quality solutions. Specifically, we
choose a considerably large population size (λ = 50) to enhance exploration, a generous
step-size (σ = 66.666) based on the standard formula σ = UB−LB

3
with LB, UB =

−100.0, 100.0, to allow the algorithm to navigate a wide search space efficiently, and a
maximum number of iterations (max_iters = 500) to achieve a high-quality outcome. To
evaluate the objective value, we use Biogeme’s simulation module with varying numbers
of scenarios R. All tests are performed in a single thread on a computational cluster node
with two 2.4 GHz Intel Xeon Platinum 8360Y processors, utilizing 16 GB of RAM. We
utilize the latest version of Biogeme, PandasBiogeme 3.2.14, as described by Bierlaire
(2023). For each test, we consider sample sizes N = {500, 1, 000} and numbers of scenarios
R = {50, 100, 500, 1, 000}, where for models involving continuous mixtures we increase
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the number of scenarios up to R = 3, 000. For every tuple (N,R) we take 100 samples
from the full dataset (and respective distributions) and report the averaged obtained
values. For the discrete-continuous mixtures of logit, Biogeme’s simulation module with
R = 10, 000 is used to compute the final log-likelihood.

The first dataset is extracted from stated preference data on hypothetical mode choice
collected in Switzerland (Bierlaire et al., 2001). Three alternatives are considered: car,
rail, and Swissmetro (SM), with “car” being available only to car owners. In the first
experiment, we hypothesize that there exists a portion of the population with baseline
preferences for alternatives that differ form the rest of individuals. Therefore, separate
alternative-specific constants ASC′

car,ASC′
rail are estimated for this class. We refer to this

class as class 2 and to the base model as class 1. The systematic utility equations for the
two classes are:

V
(1)
car = ASCcar + βtraveltime · traveltimecar + βcost · costcar,

V
(1)
rail = ASCrail + βtraveltime · traveltimerail + βcost · costrail + βheadway · headwayrail,

V
(1)
SM = βtraveltime · traveltimeSM + βcost · costSM + βheadway · headwaySM,

V
(2)
car = ASC′

car + βtraveltime · traveltimecar + βcost · costcar,

V
(2)
rail = ASC′

rail + βtraveltime · traveltimerail + βcost · costrail + βheadway · headwayrail,

V
(2)
SM = βtraveltime · traveltimeSM + βcost · costSM + βheadway · headwaySM.

The results are presented in Tables 1, 2, and 3. We observe that, CMA-ES does not succeed
in providing Biogeme with a starting point better than the standard initialization with
the resulting Bio-C log-likelihood values being consistently worse. This trend holds across
all tested configurations of N and R. In contrast, Biogeme initialized with BHAMSLE
(Bio-B) achieves the highest log-likelihood values in the majority of configurations, with
improvements becoming particularly significant starting from R = 50. On average, the log-
likelihood values achieved by Bio-B improve by approximately 3% compared to Biogeme
with default initialization.

For the estimated probabilities of the two latent classes (p1, p2), Biogeme with default
initialization struggles to distinguish between the two classes, often assigning nearly
uniform probabilities. Biogeme initialized with CMA-ES shows more variability in these
probabilities but does not achieve the consistency observed with BHAMSLE initialization.
When using the BHAMSLE starting points, at low R, the estimated probabilities remain
close to uniform, but starting around R = 50, Biogeme consistently captures a higher
probability for class 1, likely contributing to the improved log-likelihood.
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Table 1 – Comparison of achieved log-likelihood values and runtimes using
Biogeme with default initialization (Bio), Biogeme with CMA-ES (C) starting
point (Bio-C), and Biogeme with BHAMSLE (B) starting point (Bio-B) when
estimating a discrete mixture of logit models with observed choices (N =
population size, R = number of draws, LL = log-likelihood, T = estimation
time in seconds).

N R LL-Bio LL-Bio-C Gap (%) LL-Bio-B Gap (%) T-Bio T-C T-Bio-C T-B T-Bio-B

500 1 -390.267 -397.371 -1.82 -390.267 0.00 3 9 3 0 3
500 5 -390.267 -412.224 -5.63 -390.267 0.00 3 9 3 0 3
500 10 -390.267 -397.582 -1.87 -382.090 2.10 3 9 3 0 4
500 20 -390.267 -404.122 -3.55 -377.073 3.38 3 9 3 1 4
500 50 -390.267 -407.086 -4.31 -374.006 4.17 3 9 3 9 3
500 100 -390.267 -409.461 -4.92 -380.120 2.60 3 9 3 8 3
500 500 -390.267 -404.289 -3.59 -374.499 4.04 3 9 3 63 3
500 1,000 -390.267 -391.796 -0.39 -376.737 3.47 3 9 3 238 3

1,000 1 -779.195 -803.627 -3.14 -779.195 0.00 4 18 4 0 4
1,000 5 -779.195 -827.014 -6.14 -779.195 0.00 3 18 3 0 3
1,000 10 -779.195 -813.654 -4.42 -758.929 2.60 3 18 4 1 4
1,000 20 -779.195 -819.721 -5.20 -760.612 2.38 3 18 3 2 5
1,000 50 -779.195 -808.425 -3.75 -761.902 2.22 3 17 4 8 4
1,000 100 -779.195 -820.438 -5.29 -759.129 2.58 3 17 4 15 4
1,000 500 -779.195 -797.136 -2.30 -758.910 2.60 3 16 3 148 4
1,000 1,000 -779.195 -815.383 -4.64 -756.742 2.88 3 18 3 1,035 4

In terms of runtime, all methods terminate in negligibly short amounts of time - except
for BHAMSLE which, upwards of R = 500, starts to require more time for the estimation.
The runtimes for Biogeme and CMA-ES are almost constant across R, due to the fact
that no simulation has to be invoked to evaluate the objective function.

Table 3 presents the estimated parameter values for all methods. Several notable dif-
ferences emerge. The alternative-specific constants (ASCs) exhibit substantial variation
across methods, with CMA-ES producing extreme values, particularly for ASCcar and
ASC′

car, which diverge significantly from the estimates obtained using Biogeme-based
estimations. Similarly, CMA-ES results in a much larger magnitude for βHE, whereas
Biogeme with BHAMSLE (Bio-B) provides more stable estimates that align more closely
with expectations. For the cost and travel time sensitivities, βcost and βtime, Biogeme with
BHAMSLE and default initialization yield relatively consistent estimates, while CMA-ES
again shows large deviations, particularly for βcost, which is estimated at a much higher
absolute value. These discrepancies may suggest that CMA-ES struggles to navigate the
parameter space effectively, potentially contributing to its lower log-likelihood values.
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Table 2 – Comparison of latent class probabilities derived using Biogeme with
default initialization (Bio), Biogeme with CMA-ES (C) starting point (Bio-C),
and Biogeme with BHAMSLE (B) starting point (Bio-B) when estimating a
discrete mixture of logit models with observed choices (N = population size,
R = number of draws, LL = log-likelihood, T = estimation time in seconds).

N R (p1, p2)-Bio (p1, p2)-C (p1, p2)-Bio-C (p1, p2)-B (p1, p2)-Bio-B

500 1 (0.50, 0.50) (0.42, 0.58) (0.40, 0.60) (0.50, 0.50) (0.50, 0.50)
500 5 (0.50, 0.50) (0.39, 0.61) (0.43, 0.57) (0.50, 0.50) (0.50, 0.50)
500 10 (0.50, 0.50) (0.39, 0.61) (0.39, 0.61) (0.58, 0.42) (0.72, 0.28)
500 20 (0.50, 0.50) (0.49, 0.51) (0.49, 0.51) (0.53, 0.47) (0.69, 0.31)
500 50 (0.50, 0.50) (0.25, 0.75) (0.00, 1.00) (0.61, 0.39) (0.53, 0.47)
500 100 (0.50, 0.50) (0.56, 0.44) (0.60, 0.40) (0.55, 0.45) (0.72, 0.28)
500 500 (0.50, 0.50) (0.47, 0.53) (0.48, 0.52) (0.67, 0.33) (0.66, 0.34)
500 1,000 (0.50, 0.50) (0.36, 0.64) (0.01, 0.99) (0.62, 0.38) (0.61, 0.39)

1,000 1 (0.50, 0.50) (0.51, 0.49) (0.51, 0.49) (0.50, 0.50) (0.50, 0.50)
1,000 5 (0.50, 0.50) (0.44, 0.56) (0.45, 0.55) (0.50, 0.50) (0.50, 0.50)
1,000 10 (0.50, 0.50) (0.45, 0.55) (0.43, 0.57) (0.54, 0.46) (0.77, 0.23)
1,000 20 (0.50, 0.50) (0.45, 0.55) (0.45, 0.55) (0.59, 0.41) (0.78, 0.22)
1,000 50 (0.50, 0.50) (0.61, 0.39) (0.60, 0.40) (0.63, 0.37) (0.74, 0.26)
1,000 100 (0.50, 0.50) (0.42, 0.58) (0.40, 0.60) (0.68, 0.32) (0.62, 0.38)
1,000 500 (0.50, 0.50) (0.36, 0.64) (0.38, 0.62) (0.62, 0.38) (0.53, 0.47)
1,000 1,000 (0.50, 0.50) (0.33, 0.67) (0.33, 0.67) (0.66, 0.34) (0.63, 0.37)

In the second experiment, we make use of the same model specification, but now we
consider the βtraveltime parameter to be normally distributed amongst the population
for class 1, resulting in a discrete-continuous mixture of logit. To this end, we denote
βmixed

traveltime = βtraveltime + βstd
traveltime · Un, where Un ∼ N(0, 1), and replace βtraveltime by this

new parameter for class 1, keeping everything else the same. We give the new systematic
equations below:

V
(1)
car = ASCcar + βmixed

traveltime · traveltimecar + βcost · costcar,

V
(1)
rail = ASCrail + βmixed

traveltime · traveltimerail + βcost · costrail + βheadway · headwayrail,

V
(1)
SM = βmixed

traveltime · traveltimeSM + βcost · costSM + βheadway · headwaySM,

V
(2)
car = ASC′

car + βtraveltime · traveltimecar + βcost · costcar,

V
(2)
rail = ASC′

rail + βtraveltime · traveltimerail + βcost · costrail + βheadway · headwayrail,

V
(2)
SM = βtraveltime · traveltimeSM + βcost · costSM + βheadway · headwaySM.
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Table 3 – Comparison of average estimated parameter values and log-likelihood
over 100 samples with N = 1, 000, R = 1, 000, using Biogeme with default
initialization (Bio), CMA-ES, Biogeme with CMA-ES starting point (Biogeme-
C), BHAMSLE, and Biogeme with BHAMSLE starting point (Biogeme-B)
when estimating a discrete mixture of logit models with observed choices.

Parameter Biogeme CMA-ES Biogeme-C BHAMSLE Biogeme-B

ASCcar -0.452 70.802 17.579 -11.987 -12.076
ASC′

car -0.657 38.071 10.754 -2.887 -2.360
ASCtrain -1.066 1.764 1.761 -1.449 -1.571
ASC′

train -5.299 -11.665 -11.421 -9.955 -5.622
βcost -1.098 -2.192 -2.195 -0.642 -1.811
βHE -0.452 -21.005 -5.335 -0.055 -0.399
βtime -0.657 0.407 0.401 -0.284 -0.261
p1 0.50 0.33 0.33 0.66 0.63
p2 0.50 0.67 0.67 0.34 0.37

LL(β) -779.195 -821.813 -815.383 -783.631 -756.742

The total number of parameters to estimate thus increases to nine.

The results are shown in Tables 4, 5 and 6. We observe that for smaller values of R, the
differences between LL-Bio and LL-Bio-C are small, but the log-likelihood values achieved
with Biogeme initialized with CMA-ES (Bio-C) are consistently worse than those achieved
with both default initialization (Bio) and BHAMSLE-initialized Biogeme (Bio-B). This
suggests that CMA-ES provides suboptimal starting points, which negatively impact the
estimation process.

In contrast, Biogeme initialized with BHAMSLE (Bio-B) achieves significantly better
log-likelihood values as the number of simulation draws increases. For samples of size
N = 500, BHAMSLE provides starting points that yield up to 10% better solutions
compared to Biogeme with default initialization. For N = 1, 000, the improvement is
smaller but still noticeable, with around 3% better log-likelihood values on average. The
number of simulation draws necessary for BHAMSLE to outperform default initialization
increases for larger sample sizes, with clear improvements starting from R = 500.

It is important to note that in some cases, Biogeme initialized with BHAMSLE can yield
worse results than the default initialization, as seen, for example, with N = 500, R = 100.
This likely stems from the fact that small numbers of simulation draws may not be
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Table 4 – Comparison of achieved log-likelihood values and runtimes using
Biogeme with default initialization (Bio), Biogeme with CMA-ES (C) starting
point (Bio-C), and Biogeme with BHAMSLE (B) starting point (Bio-B) when
estimating a discrete-continuous mixture of logit with observed choices (N =
population size, R = number of draws, LL = log-likelihood, T = estimation
time in seconds).

N R LL-Bio LL-Bio-C Gap (%) LL-Bio-B Gap (%) T-Bio T-C T-Bio-C T-B T-Bio-B

500 1 -438.812 -453.410 -2.88 -438.760 0.01 17 25,774 4 0 20
500 5 -431.788 -444.526 -2.41 -428.005 0.88 14 25,025 5 0 13
500 10 -427.414 -442.143 -2.87 -428.099 -0.16 20 25,665 13 0 19
500 20 -426.447 -443.612 -4.30 -426.925 -0.11 23 27,526 19 1 20
500 50 -439.559 -437.951 -3.04 -435.483 0.93 24 26,428 33 3 17
500 100 -431.124 -445.574 -4.82 -433.809 -0.62 23 27,690 37 6 23
500 500 -490.745 -435.685 -2.28 -436.676 11.02 38 37,066 245 46 48
500 1,000 -488.010 -436.262 -2.42 -435.165 10.83 90 48,358 380 107 55
500 3,000 -474.640 - - -433.381 8.69 312 >20h - 347 135

1,000 1 -877.418 -900.399 -2.62 -875.202 0.25 11 26,643 4 0 11
1,000 5 -868.597 -883.455 -2.82 -867.473 0.13 15 26,253 8 0 15
1,000 10 -855.605 -885.834 -3.91 -855.563 0.00 19 28,093 11 1 21
1,000 20 -856.742 -893.263 -3.77 -853.567 0.37 28 27,758 35 2 30
1,000 50 -869.742 -870.438 -0.56 -866.792 0.34 23 28,612 85 7 23
1,000 100 -888.778 -892.162 -3.82 -870.692 2.04 26 30,897 130 14 38
1,000 500 -867.117 -854.552 -0.70 -845.290 2.52 88 48,886 135 96 83
1,000 1,000 -869.915 - - -845.012 2.87 166 >20h - 219 169
1,000 3,000 -868.542 - - -843.699 2.86 477 >20h - 619 493

sufficient to efficiently capture the mixed parameter. For CMA-ES initialization, the
log-likelihood values remain consistently below those achieved with either default or
BHAMSLE initialization across all configurations.

The differences in the estimated latent class probabilities (p1, p2) are again not large, but
substantial enough to influence the results. Biogeme with default initialization often fails
to approach the true class distribution, which appears to be close to 40% for class 1 and
60% for class 2. Biogeme initialized with CMA-ES produces probabilities that are highly
variable and often diverge significantly from the true distribution. In contrast, Biogeme
initialized with BHAMSLE consistently converges towards this improved local optimum,
demonstrating its effectiveness in guiding the estimation process.

In terms of runtime, CMA-ES initialization is by far the slowest, with runtime increasing
as R grows, and even exceeding the 20-hour time limit for larger simulations. BHAMSLE
initialization also incurs a runtime overhead compared to Biogeme with default initializa-
tion, but the gap is smaller than for the discrete mixture of logit models. On average,
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Table 5 – Comparison of latent class probabilities derived using Biogeme with
default initialization (Bio), Biogeme with CMA-ES (C) starting point (Bio-C),
and Biogeme with BHAMSLE (B) starting point (Bio-B) when estimating a
discrete-continuous mixture of logit with observed choices (N = population
size, R = number of draws, LL = log-likelihood, T = estimation time in
seconds).

N R (p1, p2)-Bio (p1, p2)-C (p1, p2)-Bio-C (p1, p2)-B (p1, p2)-Bio-B

500 1 (0.45, 0.55) (0.47, 0.53) (0.35, 0.65) (0.50, 0.50) (0.44, 0.56)
500 5 (0.44, 0.56) (0.67, 0.33) (0.67, 0.33) (0.50, 0.50) (0.41, 0.59)
500 10 (0.45, 0.55) (0.99, 0.01) (0.98, 0.02) (0.52, 0.48) (0.43, 0.57)
500 20 (0.46, 0.54) (1.00, 0.00) (0.99, 0.01) (0.49, 0.51) (0.49, 0.51)
500 50 (0.44, 0.56) (1.00, 0.00) (0.98, 0.02) (0.57, 0.43) (0.42, 0.58)
500 100 (0.40, 0.60) (1.00, 0.00) (1.00, 0.00) (0.54, 0.46) (0.41, 0.59)
500 500 (0.33, 0.67) (0.61, 0.39) (0.62, 0.38) (0.43, 0.57) (0.39, 0.61)
500 1,000 (0.34, 0.66) (1.00, 0.00) (1.00, 0.00) (0.42, 0.58) (0.38, 0.62)
500 3,000 (0.34, 0.66) - - (0.39, 0.61) (0.39, 0.61)

1,000 1 (0.39, 0.61) (0.27, 0.73) (0.05, 0.95) (0.50, 0.50) (0.48, 0.52)
1,000 5 (0.41, 0.59) (1.00, 0.00) (0.99, 0.01) (0.50, 0.50) (0.45, 0.55)
1,000 10 (0.46, 0.54) (0.71, 0.29) (0.72, 0.28) (0.51, 0.49) (0.46, 0.54)
1,000 20 (0.45, 0.55) (1.00, 0.00) (1.00, 0.00) (0.41, 0.59) (0.41, 0.59)
1,000 50 (0.44, 0.56) (0.51, 0.49) (0.44, 0.56) (0.54, 0.46) (0.41, 0.59)
1,000 100 (0.44, 0.56) (1.00, 0.00) (1.00, 0.00) (0.37, 0.53) (0.42, 0.58)
1,000 500 (0.44, 0.56) (1.00, 0.00) (0.44, 0.56) (0.41, 0.59) (0.39, 0.61)
1,000 1,000 (0.43, 0.57) - - (0.40, 0.60) (0.39, 0.61)
1,000 3,000 (0.43, 0.57) - - (0.41, 0.59) (0.40, 0.60)

Biogeme with default initialization completes the estimation about 1.5 times faster than
BHAMSLE, but the significant improvement in log-likelihood values with BHAMSLE
makes this trade-off worthwhile.

Finally, Table 6 presents the estimated parameter values for all methods. As CMA-ES
did not converge within the time limit, for N = 1, 000 and R = 1, 000, 3, 000, we show the
results for R = 500 for that method instead. Introducing a normally distributed travel
time sensitivity βtraveltime increases the complexity of the estimation, leading to greater
variability in parameter estimates across methods. CMA-ES produces extreme values
for several parameters, notably for ASC′

car and βHE, which deviate significantly from
other estimates. Similarly, the mean of the travel time coefficient, βtime, mean, is highly
unstable under CMA-ES, reaching a large negative value, which may indicate that the
optimizer struggles to find a meaningful distribution for this parameter. A key observation
concerns the standard deviation of the travel time coefficient, βtime, std.. Ideally, this
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Table 6 – Comparison of average estimated parameter values and log-likelihood
over 100 samples with N = 1, 000, R = 3, 000, 500CMA-ES, using Biogeme
with default initialization (Bio), CMA-ES, Biogeme with CMA-ES start-
ing point (Biogeme-C), BHAMSLE, and Biogeme with BHAMSLE starting
point (Biogeme-B) when estimating a discrete-continuous mixture of logit
with observed choices.

Parameter Biogeme CMA-ES Biogeme-C BHAMSLE Biogeme-B

ASCcar -4.498 12.427 0.983 -0.257 3.437
ASC′

car -0.108 -31.996 -9.131 -3.736 2.068
ASCtrain -1.548 0.187 -1.042 -1.28 -3.163
ASC′

train -6.313 -7.328 -7.389 -6.998 -10.272
βcost -1.286 -1.510 -1.284 -1.301 -2.714
βHE -0.037 -45.085 0.046 0.731 -6.767
βtime, mean 0.654 -28.847 -16.483 -16.825 -11.937
βtime, std. -5.124 -0.098 -0.166 0.224 -0.432
p1 0.43 1.00 0.44 0.41 0.40
p2 0.57 0.00 0.56 0.59 0.60

LL(β) -868.542 -863.920 -854.552 -863.905 -843.699

parameter should capture unobserved heterogeneity in travel time sensitivities. However,
CMA-ES yields an estimate close to zero, effectively collapsing the mixed distribution. In
contrast, Biogeme with BHAMSLE produces more reasonable values for both the mean
and standard deviation, allowing for heterogeneity in preferences to be captured in the
model.

The estimated cost sensitivity, βcost, remains relatively consistent across Biogeme-based
methods, whereas CMA-ES produces a more negative estimate. The alternative-specific
constants also show large variations, with CMA-ES generating results that differ substan-
tially from those obtained with Biogeme’s default initialization and BHAMSLE. This
pattern suggests that CMA-ES initialization does not provide reliable estimates, further
supported by its lower log-likelihood values compared to BHAMSLE.

For the next two tests we consider a different data set. It is extracted from revealed
preference data on mode choice collected in London (Hillel et al., 2018). There are four
alternatives available to all individuals: walking, cycling, public transport (pt), and
driving. This time, instead of using observed choices, we use synthetic choices: In a
pre-processing step, using a separately estimated logit model, every individual in the
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sample is assigned to either class 1, which represents the base model, or class 2, in which
the time-sensitivity parameter βtraveltime is divided by a factor of 5 to generate the choice.
We therefore estimate a separate travel time sensitivity parameter β′

traveltime for that class.
The probability to be assigned to class 1 is 70%, and the probability for class 2 is 30%.
We investigate which estimation method performs better in discovering these now known
latent population segments. The systematic equations for the utilities are:

V
(1)
walking = βtraveltime · traveltimewalking + βcost · costwalking,

V
(1)
cycling = ASCcycling + βtraveltime · traveltimecycling + βcost · costcycling,

V
(1)
pt = ASCpt + βtraveltime · traveltimept + βcost · costpt,

V
(1)
driving = ASCdriving + βtraveltime · traveltimedriving + βcost · costdriving,

V
(2)
walking = β′

traveltime · traveltimewalking + βcost · costwalking,

V
(2)
cycling = ASCcycling + β′

traveltime · traveltimecycling + βcost · costcycling,

V
(2)
pt = ASCpt + β′

traveltime · traveltimept + βcost · costpt,

V
(2)
driving = ASCdriving + β′

traveltime · traveltimedriving + βcost · costdriving.

Thus we have a total of seven parameters to be estimated. The results are presented
in Tables 7, 8, 9 and 10. Table 7 shows that Biogeme initialized with CMA-ES (Bio-C)
consistently yields worse log-likelihood values compared to both default initialization
(Bio) and BHAMSLE-initialized Biogeme (Bio-B). In contrast, starting from R = 50,
Biogeme initialized with BHAMSLE consistently achieves the best log-likelihood values,
improving up to 6% compared to default initialization. This demonstrates the strength
of BHAMSLE in providing high-quality starting points, while CMA-ES fails to guide
Biogeme effectively.

In terms of estimation times, Biogeme and CMA-ES are again consistently low and
independent of R, as no simulation is required. BHAMSLE as a pre-processing step only
becomes computationally expensive for R ≥ 500, and even then, the additional runtime is
modest relative to the gains in log-likelihood.

Table 8 highlights the ability of the initialization methods to help Biogeme estimate the
correct ratio between the two travel time sensitivity parameters. Biogeme initialized with
CMA-ES struggles to produce meaningful ratios, often showing highly erratic and extreme
values far from the true ratio of 5. In contrast, with BHAMSLE initialization, Biogeme
is able to consistently estimate ratios closer to the true value, particularly starting from
R = 50. This confirms that BHAMSLE significantly improves Biogeme’s capacity to
uncover the underlying latent structure. For the estimated class membership probabilities
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Table 7 – Comparison of achieved log-likelihood values and runtimes using
Biogeme with default initialization (Bio), Biogeme with CMA-ES (C) starting
point (Bio-C), and Biogeme with BHAMSLE (B) starting point (Bio-B) when
estimating a discrete mixture of logit models with synthetic choices (N =
population size, R = number of draws, LL = log-likelihood, T = estimation
time in seconds).

N R LL-Bio LL-Bio-C Gap (%) LL-Bio-B Gap (%) T-Bio T-C T-Bio-C T-B T-Bio-B

500 1 -524.054 -524.054 0.00 -524.054 0.00 2 8 1 0 3
500 5 -525.484 -525.638 -0.03 -525.484 0.00 2 9 1 0 2
500 10 -525.483 -524.955 0.10 -525.483 0.00 4 9 1 0 1
500 20 -524.371 -535.487 -2.12 -517.502 1.31 2 9 1 2 2
500 50 -523.352 -521.152 0.42 -493.735 5.66 2 8 1 9 2
500 100 -523.352 -527.380 -0.77 -493.267 5.75 3 9 1 24 2
500 500 -525.485 -524.797 0.13 -494.588 5.88 1 9 1 211 1
500 1,000 -525.489 -521.119 0.83 -495.370 5.73 1 10 1 445 1

1,000 1 -1051.925 -1039.297 1.20 -1051.921 0.00 2 16 1 0 2
1,000 5 -1050.030 -1054.650 -0.44 -1050.034 0.00 2 19 2 0 4
1,000 10 -1051.926 -1084.740 -3.12 -1051.929 0.00 2 17 1 0 2
1,000 20 -1051.928 -1042.348 0.91 -1039.099 1.22 2 15 1 4 3
1,000 50 -1051.923 -1051.394 0.05 -988.700 6.01 2 18 2 24 2
1,000 100 -1051.929 -1074.221 -2.12 -987.545 6.12 2 19 2 51 2
1,000 500 -1051.434 -1056.687 -0.50 -989.194 5.92 1 19 1 506 1
1,000 1,000 -1051.926 -1042.242 0.92 -988.494 6.03 2 16 1 1121 1

(p1, p2) in Table 9, Biogeme initialized with CMA-ES often converges to incorrect or
extreme distributions, including uniform splits or highly biased values unrelated to the true
proportions (0.70, 0.30). Biogeme initialized with BHAMSLE, however, consistently guides
the estimation process towards the correct class membership probabilities starting from
R = 50. Biogeme with default initialization struggles to recover the correct proportions,
remaining closer to uniform splits.

Table 10 presents the estimated parameter values for all methods. As discussed above,
CMA-ES produces an estimate for β′

time that is too close to βtime, failing to capture the
intended difference in sensitivity across the two latent classes. In contrast, Biogeme initial-
ized with BHAMSLE (Bio-B) provides more reliable estimates for both time parameters,
consistently maintaining a clear separation between βtime and β′

time. The alternative-
specific constants (ASCs) remain relatively stable across methods, though CMA-ES again
introduces some unexpected deviations, particularly for ASCpb, which differs notably from
the values obtained with other methods. The cost sensitivity parameter, βcost, is also
highly unstable under Biogeme-C, with an exaggerated negative estimate that deviates
significantly from the expected range.
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Table 8 – Comparison of time-coefficient ratios derived using Biogeme with
default initialization (Bio), Biogeme with CMA-ES (C) starting point (Bio-C),
and Biogeme with BHAMSLE (B) starting point (Bio-B) when estimating a
discrete mixture of logit models with synthetic choices (N = population size,
R = number of draws, Ratio = βtraveltime /β′

traveltime).

N R Ratio-Bio Ratio-C Ratio-Bio-C Ratio-B Ratio-Bio-B

500 1 1.00 0.94 0.79 1.00 1.00
500 5 1.00 -3.47 -11.77 1.00 1.00
500 10 1.00 0.59 0.30 1.00 1.00
500 20 1.00 1.06 1.29 0.68 -0.24
500 50 1.00 9.35 -54.83 4.36 6.11
500 100 1.00 0.78 0.57 3.29 4.07
500 500 1.00 -1.58 -34.68 4.15 5.70
500 1,000 1.00 0.57 0.23 4.25 5.70

1,000 1 1.00 7.94 -12.20 1.00 1.00
1,000 5 1.00 1.11 -21.86 1.00 1.00
1,000 10 1.00 0.97 0.69 1.00 1.00
1,000 20 1.00 0.57 0.69 0.65 -0.67
1,000 50 1.00 1.03 1.21 3.95 5.98
1,000 100 1.00 -2.56 -0.17 3.11 3.67
1,000 500 1.00 0.89 -0.21 4.24 5.17
1,000 1,000 1.00 1.30 1.28 4.17 5.20

Overall, the results reinforce the findings from previous experiments: while CMA-ES
produces highly variable and often unreliable estimates, BHAMSLE systematically im-
proves Biogeme’s ability to recover meaningful parameters. The separation between the
two travel time sensitivity parameters is particularly well captured with BHAMSLE,
demonstrating its effectiveness in guiding the estimation towards a more accurate latent
class segmentation.

For the last experiment, we perform a similar altercation to class 1 as in experiment 1, this
time replacing βcost by a normally distributed βmixed

cost = βcost +βstd
cost ·Un, with Un ∼ N(0, 1),

together with adding a third latent class, which is hypothesized to be “lazy”, which in this
context means that they do not consider walking or cycling in their choice set. Class 2
remains the same as in the previous experiment. We assign individuals to class 1 with a
probability of 50%, class 2 with 30%, and class 3 with 20%. We give the new systematic

28



BHAMSLE: Heuristic Likelihood Estimation May 21, 2025

Table 9 – Comparison of latent class probabilities derived using Biogeme with
default initialization (Bio), Biogeme with CMA-ES (C) starting point (Bio-C),
and Biogeme with BHAMSLE (B) starting point (Bio-B) when estimating a
discrete mixture of logit models with synthetic choices (N = population size,
R = number of draws, LL = log-likelihood, T = estimation time in seconds).

N R (p1, p2)-Bio (p1, p2)-C (p1, p2)-Bio-C (p1, p2)-B (p1, p2)-Bio-B

500 1 (0.50, 0.50) (0.62, 0.38) (0.49, 0.51) (0.50, 0.50) (0.50, 0.50)
500 5 (0.50, 0.50) (0.50, 0.50) (0.13, 0.87) (0.50, 0.50) (0.50, 0.50)
500 10 (0.50, 0.50) (0.57, 0.43) (0.43, 0.57) (0.50, 0.50) (0.50, 0.50)
500 20 (0.50, 0.50) (0.57, 0.43) (0.45, 0.55) (0.40, 0.60) (0.06, 0.94)
500 50 (0.50, 0.50) (0.55, 0.45) (0.53, 0.47) (0.50, 0.50) (0.70, 0.30)
500 100 (0.50, 0.50) (0.61, 0.39) (0.39, 0.61) (0.63, 0.37) (0.67, 0.33)
500 500 (0.50, 0.50) (0.59, 0.41) (0.36, 0.64) (0.66, 0.34) (0.71, 0.29)
500 1,000 (0.50, 0.50) (0.55, 0.45) (0.31, 0.69) (0.66, 0.34) (0.71, 0.29)

1,000 1 (0.50, 0.50) (0.55, 0.45) (0.21, 0.79) (0.50, 0.50) (0.50, 0.50)
1,000 5 (0.50, 0.50) (0.63, 0.37) (0.40, 0.60) (0.50, 0.50) (0.50, 0.50)
1,000 10 (0.50, 0.50) (0.63, 0.37) (0.46, 0.54) (0.50, 0.50) (0.50, 0.50)
1,000 20 (0.50, 0.50) (0.50, 0.50) (0.43, 0.57) (0.46, 0.54) (0.21, 0.79)
1,000 50 (0.50, 0.50) (0.61, 0.39) (0.54, 0.46) (0.68, 0.32) (0.79, 0.21)
1,000 100 (0.50, 0.50) (0.57, 0.43) (0.50, 0.50) (0.64, 0.36) (0.66, 0.34)
1,000 500 (0.50, 0.50) (0.60, 0.40) (0.39, 0.61) (0.65, 0.35) (0.69, 0.31)
1,000 1,000 (0.50, 0.50) (0.58, 0.42) (0.53, 0.47) (0.69, 0.31) (0.69, 0.31)

Table 10 – Comparison of average estimated parameter values and log-likelihood
over 100 samples with N = 1, 000, R = 1, 000, using Biogeme with default
initialization (Bio), CMA-ES, Biogeme with CMA-ES starting point (Biogeme-
C), BHAMSLE, and Biogeme with BHAMSLE starting point (Biogeme-B)
when estimating a discrete mixture of logit models with synthetic choices.

Parameter Biogeme CMA-ES Biogeme-C BHAMSLE Biogeme-B

ASCbike -3.420 -4.271 -3.892 -3.794 -3.961
ASCcar -0.685 -0.592 -0.912 -0.927 -1.465
ASCpb -0.356 -0.215 -0.123 -0.374 -0.585
βcost -0.158 -0.251 -1.983 -0.159 -0.145
βtime -2.496 -2.472 -3.245 -6.296 -6.503
β′

time -2.496 -1.901 -2.535 -1.509 -1.251
p1 0.50 0.58 0.53 0.69 0.69
p2 0.50 0.42 0.47 0.31 0.31

LL(β) -1,051.926 -1,046.672 -1,042.242 -1,014.289 -988.494
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Table 11 – Comparison of achieved log-likelihood values and runtimes using
Biogeme with default initialization (Bio), Biogeme with CMA-ES (C) starting
point (Bio-C), and Biogeme with BHAMSLE (B) starting point (Bio-B) when
estimating a discrete-continuous mixture of logit with synthetic choices (N =
population size, R = number of draws, LL = log-likelihood, T = estimation
time in seconds).

N R LL-Bio LL-Bio-C Gap C (%) LL-Bio-B Gap B (%) T-Bio T-C T-Bio-C T-B T-Bio-B

500 1 -528.517 -529.759 -0.23 -546.381 -3.38 1 27,195 1 0 1
500 5 -529.650 -527.686 0.37 -576.577 -8.86 6 27,031 3 0 6
500 10 -528.341 -533.415 -0.96 -553.279 -4.72 12 27,007 4 0 9
500 20 -531.867 -530.720 0.22 -534.740 -0.54 23 26,880 6 78 23
500 50 -527.150 -529.982 -0.54 -525.410 0.33 58 27,097 40 131 59
500 100 -530.017 -528.852 0.22 -528.374 0.31 108 27,162 63 271 122
500 500 -529.292 -527.867 0.27 -512.725 3.13 719 32,881 818 1,196 563
500 1,000 -525.036 -528.851 -0.73 -509.862 2.89 1,260 33,086 223 2,084 1,216
500 3,000 -525.564 -526.246 -0.13 -507.590 3.42 1,359 37,063 512 5,543 1,188

1,000 1 -1,051.300 -1,050.300 0.10 -1,053.298 -0.19 3 33,615 3 0 3
1,000 5 -1,051.880 -1,065.680 -1.31 -1,052.301 -0.04 12 33,763 10 0 11
1,000 10 -1,051.470 -1,048.940 0.24 -1,051.155 0.03 26 32,964 12 0 26
1,000 20 -1,049.410 -1,048.650 0.07 -1,051.824 -0.23 45 33,770 24 179 49
1,000 50 -1,050.840 -1,051.740 -0.09 -1,049.790 0.10 137 33,939 47 213 113
1,000 100 -1,054.330 -1,050.760 0.34 -1,030.502 2.26 296 32,651 129 551 240
1,000 500 -1,051.370 -1,053.790 -0.23 -1,016.570 3.31 1,659 38,360 792 2,803 1,171
1,000 1,000 -1,049.230 -1,059.890 -1.02 -1,014.081 3.35 2,805 37,943 459 5,248 2,423
1,000 3,000 -1,059.610 -1,066.090 -0.61 -1,022.137 3.53 2,459 40,720 1030 23,423 2,642

equations for the utilities of classes 1 and 3 below:

V
(1)
walking = βtraveltime · traveltimewalking + βmixed

cost · costwalking,

V
(1)
cycling = ASCcycling + βtraveltime · traveltimecycling + βmixed

cost · costcycling,

V
(1)
pt = ASCpt + βtraveltime · traveltimept + βmixed

cost · costpt,

V
(1)
driving = ASCdriving + βtraveltime · traveltimedriving + βmixed

cost · costdriving,

V
(3)
pt = ASCpt + βtraveltime · traveltimept + βcost · costpt,

V
(3)
driving = ASCdriving + βtraveltime · traveltimedriving + βcost · costdriving.

Thus we have a total of nine parameters to be estimated. Based on the observations from
the second experiment, where CMA-ES was not able to complete the estimation of the
discrete-continuous mixture of logit for larger instances, we reduce the population size λ

from 50 to 20 in this experiment. This choice remains generous given the nine-dimensional
parameter space. The results are presented in Tables 11, 12 and 13. Table 11 shows
that Biogeme initialized with CMA-ES (Bio-C) produces consistently worse log-likelihood
values compared to both default initialization (Bio) and BHAMSLE-initialized Biogeme
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Table 12 – Comparison of latent class probabilities derived using Biogeme with
default initialization (Bio), Biogeme with CMA-ES (C) starting point (Bio-C),
and Biogeme with BHAMSLE (B) starting point (Bio-B) when estimating a
discrete-continuous mixture of logit with synthetic choices (N = population
size, R = number of draws, LL = log-likelihood, T = estimation time in
seconds).

N R (p1, p2, p3)-Bio (p1, p2, p3)-C (p1, p2, p3)-Bio-C (p1, p2, p3)-B (p1, p2, p3)-Bio-B

500 1 (0.95, 0.05, 0.01) (1.00, 0.00, 0.00) (0.97, 0.01, 0.02) (0.33, 0.33, 0.33) (0.83, 0.05, 0.12)
500 5 (0.94, 0.05, 0.01) (1.00, 0.00, 0.00) (0.91, 0.01, 0.08) (0.33, 0.33, 0.33) (0.94, 0.06, 0.00)
500 10 (0.93, 0.05, 0.02) (0.00, 1.00, 0.00) (0.98, 0.01, 0.02) (0.33, 0.33, 0.33) (0.95, 0.00, 0.05)
500 20 (0.93, 0.07, 0.00) (1.00, 1.00, 0.00) (0.93, 0.01, 0.06) (0.34, 0.34, 0.32) (0.82, 0.04, 0.14)
500 50 (0.97, 0.02, 0.01) (0.00, 1.00, 0.00) (0.91, 0.00, 0.08) (0.31, 0.39, 0.30) (0.85, 0.01, 0.14)
500 100 (0.97, 0.03, 0.00) (0.00, 1.00, 0.00) (0.99, 0.01, 0.00) (0.36, 0.36, 0.28) (0.81, 0.02, 0.17)
500 500 (0.98, 0.02, 0.00) (1.00, 0.00, 0.00) (0.91, 0.04, 0.06) (0.40, 0.42, 0.18) (0.45, 0.35, 0.20)
500 1,000 (0.96, 0.04, 0.00) (0.00, 0.00, 1.00) (1.00, 0.00, 0.00) (0.36, 0.38, 0.14) (0.44, 0.31, 0.25)
500 3,000 (0.89, 0.11, 0.00) (0.00, 1.00, 0.00) (0.93, 0.07, 0.00) (0.43, 0.32, 0.25) (0.48, 0.29, 0.23)

1,000 1 (0.98, 0.02, 0.00) (0.00, 1.00, 0.00) (0.93, 0.03, 0.04) (0.33, 0.33, 0.33) (0.82, 0.14, 0.04)
1,000 5 (0.87, 0.12, 0.00) (0.00, 1.00, 0.00) (0.98, 0.01, 0.01) (0.33, 0.33, 0.33) (0.81, 0.18, 0.01)
1,000 10 (0.94, 0.06, 0.00) (1.00, 0.00, 0.00) (1.00, 0.00, 0.00) (0.33, 0.33, 0.33) (0.97, 0.03, 0.00)
1,000 20 (0.95, 0.05, 0.00) (1.00, 0.00, 0.00) (1.00, 0.00, 0.00) (0.35, 0.35, 0.30) (0.90, 0.09, 0.00)
1,000 50 (0.93, 0.07, 0.00) (0.00, 1.00, 0.00) (0.98, 0.01, 0.01) (0.32, 0.42, 0.26) (0.90, 0.10, 0.00)
1,000 100 (0.89, 0.11, 0.00) (1.00, 0.00, 0.00) (0.99, 0.01, 0.00) (0.43, 0.32, 0.25) (0.81, 0.06, 0.13)
1,000 500 (0.92, 0.08, 0.00) (1.00, 0.00, 0.00) (0.96, 0.04, 0.00) (0.46, 0.28, 0.26) (0.47, 0.26, 0.27)
1,000 1,000 (0.72, 0.09, 0.19) (0.00, 0.00, 1.00) (0.94, 0.04, 0.02) (0.43, 0.32, 0.25) (0.49, 0.31, 0.20)
1,000 3,000 (0.91, 0.01, 0.09) (0.00, 1.00, 0.00) (0.96, 0.01, 0.03) (0.46, 0.31, 0.23) (0.50, 0.31, 0.19)

(Bio-B). On the other hand, Biogeme initialized with BHAMSLE consistently achieves
better log-likelihood values starting from R = 500, with improvements of up to 3.5%

compared to default initialization.

The runtimes for CMA-ES (Bio-C) exhibit low variability across configurations, which can
be attributed to both the consistent overhead when calling Biogeme’s simulation module
to evaluate the objective as well as the fact that for smaller R, the likelihood estimate
may be noisier, leading to additional evaluations to converge to a stable solution. In
contrast, BHAMSLE as a pre-processing step becomes computationally expensive only for
R ≥ 500, and while it incurs an increased runtime, this is again modest relative to the
gains in log-likelihood, especially when compared to the runtime for CMA-ES.

Table 12 highlights the estimated class membership probabilities for each method. The
expected probabilities are (0.50, 0.30, 0.20), based on the synthetic choice generation.
Biogeme initialized with CMA-ES frequently produces extreme or erratic estimates, often

31



BHAMSLE: Heuristic Likelihood Estimation May 21, 2025

Table 13 – Comparison of average estimated parameter values and log-likelihood
over 100 samples with N = 1, 000, R = 3, 000, using Biogeme with default
initialization (Bio), CMA-ES, Biogeme with CMA-ES starting point (Biogeme-
C), BHAMSLE, and Biogeme with BHAMSLE starting point (Biogeme-B)
when estimating a discrete-continuous mixture of logit with synthetic choices.

Parameter Biogeme CMA-ES Biogeme-C BHAMSLE Biogeme-B

ASCbike -4.041 11.740 -3.386 -3.936 -3.890
ASCcar -18.563 -20.829 -0.524 -1.439 -1.138
ASCpb -16.195 -6.060 -0.035 -1.281 -0.245
βcost, mean -0.156 -18.890 -0.172 -0.134 -0.175
βcost, std. -2.426 23.218 -3.156 -2.546 -1.277
βtime -1.314 -4.257 -2.285 -5.283 -4.144
β′

time -8.157 -4.738 -4.210 -2.120 -1.843
p1 0.91 0.00 0.96 0.46 0.50
p2 0.01 1.00 0.01 0.31 0.31
p3 0.09 0.00 0.03 0.23 0.19

LL(β) -1,059.610 -1,063.112 -1,066.090 -1,055.974 -1,022.137

converging to simplistic distributions such as (1.00, 0.00, 0.00). Biogeme with default
initialization struggles to align with the true proportions, particularly for smaller R, where
the estimated probabilities remain far from the expected values. In contrast, starting from
R = 500, Biogeme initialized with BHAMSLE closely approaches the true segmentation.
For example, at N = 1, 000 and R = 3, 000, Biogeme with default initialization estimates
the probabilities as (0.91, 0.01, 0.09), while BHAMSLE guides Biogeme to (0.50, 0.31, 0.19),
closely matching the expected proportions.

Finally, Table 13 presents the estimated parameter values for all methods. The introduction
of both a normally distributed cost sensitivity parameter βmixed

cost and an additional latent
class increases the complexity of the estimation, leading to substantial variation across
methods. CMA-ES again exhibits unstable behavior, with extreme values for βcost, mean

and βcost, std., suggesting that it struggles to effectively capture the heterogeneity in cost
sensitivity. The large magnitude of βcost, std. under CMA-ES indicates that it fails to
estimate meaningful variation, whereas Biogeme with BHAMSLE initialization produces
more reasonable estimates that maintain consistency with previous results. The estimates
for the travel time sensitivities βtime and β′

time also show considerable discrepancies across
methods. CMA-ES and Biogeme-C fail to establish a clear separation between the two
parameters, whereas BHAMSLE provides a more stable and interpretable distinction.
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The gap between βtime and β′
time is most consistently maintained under BHAMSLE-based

initialization, reinforcing its ability to uncover the underlying latent class structure.
The alternative-specific constants (ASCs) remain relatively stable across Biogeme-based
methods, but CMA-ES produces large negative estimates for ASCcar and ASCpb, deviating
substantially from reasonably expected values.

Summary of results

The numerical experiments demonstrate the robustness and effectiveness of BHAMSLE
in providing high-quality starting points for the estimation of latent class models, even
in complex settings involving mixed parameters and multiple latent classes. Across all
experiments, the use of BHAMSLE consistently led to improved log-likelihood values
compared to standard initializations, with notable improvements ranging from 2% to 10%.
Even under challenging conditions such as normally distributed sensitivity parameters
and restricted choice sets, the heuristic allowed the estimation process to more accu-
rately recover the latent population segments. In addition to improvements in model
fit, BHAMSLE also yielded more stable and interpretable parameter estimates across all
experiments. In contrast, Biogeme initialized with CMA-ES consistently underperformed,
not only producing poorer log-likelihood values but also generating highly variable and
often extreme parameter estimates, particularly for alternative-specific constants and
sensitivity parameters. This instability was most pronounced in models with mixed cost or
travel time parameters, where CMA-ES struggled to correctly estimate the distributional
parameters, often collapsing the variance or producing unrealistic magnitudes. BHAM-
SLE, on the other hand, facilitated parameter recovery that more accurately reflected
the expected segmentation and heterogeneity. Although Biogeme, as a highly optimized
software, maintains an advantage in terms of computational time, the presence of numerous
local optima in latent class models suggests that random re-initialization strategies or
general methods like CMA-ES would likely be more computationally expensive and less
effective. This further emphasizes the clear advantage of using BHAMSLE in scenarios
where achieving a good fit is crucial, as it not only improves likelihood values but also
provides parameter estimates that are more reliable and within a reasonable range.

33



BHAMSLE: Heuristic Likelihood Estimation May 21, 2025

5 Conclusions

This work aims to improve the estimation of advanced discrete choice models (DCMs) by
introducing a new approach to handling multiple local maxima, which often cause unreliable
convergence in standard optimization methods. Reformulating the Maximum Simulated
Likelihood Estimation (MSLE) problem as a mixed-integer linear program (MILP) provides
a structured alternative to continuous optimization, leveraging combinatorial techniques to
systematically explore the solution space and identify globally optimal estimates. However,
the computational intractability of solving large-scale instances exactly necessitates an
alternative solution approach. To this end, we adapt the Breakpoint Heuristic Algorithm
(BHA), originally developed for choice-based pricing, as a coordinate descent method that
systematically explores local optima through decision-making breakpoints. Extending
these principles, we present the Breakpoint Heuristic Algorithm for MSLE (BHAMSLE),
designed to generate high-quality solutions that serve as robust initialization points for
estimation.

We demonstrate through numerical experiments that this heuristic, by exploiting the
structure of the choice problem, performs significantly better than a state-of-the-art global
optimization method that does not incorporate this structure. The results show that this
tailored approach leads to initialization points for the estimation that lead to up to 10%
improved log-likelihood values, more stable and interpretable parameter estimates, and
a better recovery of latent population segments, even in complex scenarios with mixed
parameters and restricted choice sets. Unlike general-purpose optimization methods, the
proposed heuristic avoids extreme or highly variable estimates—particularly for sensitivity
parameters and alternative-specific constants.

While this approach induces some additional computational overhead, our findings indicate
that this cost is justified by the increased likelihood of identifying high-quality solutions.
Even though there is no formal guarantee of reaching the global optimum, spending
additional computational time on a structured search significantly enhances estimation
reliability. Future research should extend the application of this approach to more
complex DCMs, evaluate its performance under different model specifications and real-
world datasets, and explore parallelization techniques to further improve computational
efficiency.
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A Input data for illustrative example of discrete mixtures

Table 14 provides the full input dataset used to construct the likelihood surface shown
in Figure 1. Each row corresponds to a synthetic individual characterized by the travel
time of two alternatives (car and bus) and their observed choice. The individuals are
grouped into three categories based on their decision behavior: the rational group contains
individuals who consistently choose the faster option, the irrational group comprises
individuals who consistently select the slower option (possibly reflecting the presence
of unobserved factors not captured by the model), and the ambiguous group includes
individuals facing symmetric alternatives and exhibiting mixed choice behavior. This
dataset was used to evaluate the latent class log-likelihood over a grid of parameter values,
including class-specific travel time coefficients and the class membership probability.
Although simplified, the dataset is carefully constructed to highlight the non-convexity of
the likelihood surface and the challenges posed by latent segmentation.

B Linearization and formulation of the MILP

In this section of the appendix, we explain how to linearize various parts and give the
full description of the mixed-integer linear program (MILP) formulation of the MSLE
problem for discrete-continuous mixture models.

B.1 Linearizing the objective

In order for the MSLE objective to be fully linear, we need to deal with the natural
logarithm around the sum of choice variables. This can be achieved through a piece-wise
linearization, as demonstrated in Fernandez Antolin (2018). We introduce auxiliary
continuous variables zin ∀n ∈ N, i ∈ Cn, together with constants Lr = (1 + r) ln(r) −
r ln(1 + r) ∀r ∈ R and Kr = ln(r) − ln(1 + r) ∀r ∈ R, representing the intercepts and
slopes. The log-sum can then be written with the following constraints:

zin ≤ Lr −Kr

∑
r∈R

ωinr, ∀n ∈ N, i ∈ Cn. (10)
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Table 14 – Input data for illustrative example (travel times in minutes, choices
are binary: 1 if bus is chosen, 0 if car is chosen).

Travel time (Car) Travel time (Bus) Group Chosen alternative

10 30 Rational 0
10 28 Rational 0
10 26 Rational 0
10 24 Rational 0
12 18 Rational 0
14 22 Rational 0
15 25 Rational 0
20 22 Rational 0
16 17 Rational 0
30 10 Rational 1
28 10 Rational 1
26 10 Rational 1
24 10 Rational 1
18 12 Rational 1
22 14 Rational 1
25 15 Rational 1
22 20 Rational 1
19 16 Rational 1

30 10 Irrational 0
28 10 Irrational 0
26 10 Irrational 0
24 10 Irrational 0
20 17 Irrational 0
10 30 Irrational 1
10 28 Irrational 1
10 26 Irrational 1
10 24 Irrational 1
20 23 Irrational 1

15 15 Ambiguous 0
15 15 Ambiguous 1
18 18 Ambiguous 0
18 18 Ambiguous 1
22 22 Ambiguous 0
22 22 Ambiguous 1
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Together with the direction of optimization, these constraints guarantee that

zin =
∑
r∈R

ωinr, ∀n ∈ N, i ∈ Cn.

Taking into account that constants in the objective can be ignored, the objective function
to maximize in the simulation-based setting, the simulated log-likelihood (sLL), can now
be written as:

sLL(β) =
∑
n∈N

zynn. (11)

B.2 Linearizing the choice variables

To incorporate the variables Uinr and ωinr into a MILP, it is necessary to linearize
all indicator functions and products. These transformations require the introduction of
additional auxiliary binary variables. We first handle the indicator function 1[fnsr≥fntr ∀t∈S],
determining the maximum scoring function per scenario. To this end, we introduce
introduce δsnr ∈ {0, 1} ∀n ∈ N, s ∈ S, r ∈ R, defined by the following constraints:

fnsr ≥ fntr −Mnsr
1 (1− δsnsr), ∀n ∈ N, s, t ∈ S, r ∈ R,

where Mnsr
1 is a sufficiently large constant to cover the range between maxs fnsr and

mins fnsr. As all scoring functions are now fully deterministic, we can define Mnsr
1 =

fmax
nsr − fmin

nsr where fmax
nsr = maxs fnsr and fmin

nsr = mins fnsr, yielding:

fnsr ≥ fntr − (fmax
nsr − fmin

nsr )(1− δsnsr), ∀n ∈ N, s, t ∈ S, r ∈ R, (12)

guaranteeing that

δsnr =


1, if fnsr ≥ fntr ∀t ∈ S,

0, otherwise.

We apply the same method to linearize the choice variable ωinr = 1[Uinr≥Ujnr ∀j∈Cn]. We
define ωinr ∈ {0, 1} ∀n ∈ N, i ∈ Cn, r ∈ R, with the following constraints:

Uinr ≥ Ujnr −Mnr
2 (1− ωinr), ∀n ∈ N, i, j ∈ Cn, r ∈ R,
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where Mnr
2 is a sufficiently large constant to cover the range between maxi Uinr and

mini Uinr. We again define Mnr
2 = Unr

max − Unr
min where Unr

max = maxi Uinr and Unr
min =

mini Uinr, yielding:

Uinr ≥ Ujnr − (Unr
max − Unr

min)(1− ωinr), ∀n ∈ N, i, j ∈ Cn, r ∈ R, (13)

and ensuring that

ωinr =


1, if Uinr ≥ Ujnr ∀j ∈ Cn,

0, otherwise.

Lastly, linearizing the product 1[fnsr≥fntr ∀t∈S]U
s
inr = δsnrU

s
inr is straight-forward due to the

binary nature of δsnr. We can do so by introducing a new continuous variable Ũ s
inr, ∀n ∈ N,

s ∈ S, i ∈ Cs
n, r ∈ R with the following constraints:

Ũ s
inr ≤ U s

inr, ∀n ∈ N, s ∈ S, i ∈ Cs
n, r ∈ R,

Ũ s
inr ≤Mnrs

3 δsnr, ∀n ∈ N, s ∈ S, i ∈ Cs
n, r ∈ R,

Ũ s
inr ≥ U s

inr −Mnrs
3 (1− δsnr), ∀n ∈ N, s ∈ S, i ∈ Cs

n, r ∈ R,

where Mnrs
3 is a sufficiently large constant to cover the range between maxi U

s
inr and 0.

Using the notation from above, we can define Mnrs
3 = Unrs

max, yielding:

Ũ s
inr ≤ U s

inr, ∀n ∈ N, s ∈ S, i ∈ Cs
n, r ∈ R, (14)

Ũ s
inr ≤ Unrs

maxδ
s
nr, ∀n ∈ N, s ∈ S, i ∈ Cs

n, r ∈ R, (15)

Ũ s
inr ≥ U s

inr − Unrs
max(1− δsnr), ∀n ∈ N, s ∈ S, i ∈ Cs

n, r ∈ R, (16)

making it so that

Ũ s
inr = δsnrU

s
inr.

B.3 MSLE as a MILP in the case of a discrete-continuous mixture
model

The complete description of MSLE as a MILP in the case of a discrete-continuous mixture
model is given below:
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max
β,π

∑
n∈N

zynn

s.t.

U s
inr =

∑
k∈Ks\M

xinkβk +
∑
m∈Ms

xinmβm + εinr, ∀n ∈ N, s ∈ S, i ∈ Cs
n, r ∈ R,

fnsr =
∑
l∈L

xnslαl + δnsr, ∀n ∈ N, s ∈ S, r ∈ R,

Uinr =
∑
s∈S

Ũ s
inr, ∀n ∈ N, s ∈ S, i ∈ Cn, r ∈ R,

fnsr ≥ fntr − (fmax
nsr − fmin

nsr )(1− δsnsr), ∀n ∈ N, s, t ∈ S, r ∈ R,

Uinr ≥ Ujnr − (Unr
max − Unr

min)(1− ωinr), ∀n ∈ N, i, j ∈ Cn, r ∈ R,

Ũ s
inr ≤ U s

inr, ∀n ∈ N, s ∈ S, i ∈ Cs
n, r ∈ R,

Ũ s
inr ≤ Unrs

maxδ
s
nr, ∀n ∈ N, s ∈ S, i ∈ Cs

n, r ∈ R,

Ũ s
inr ≥ U s

inr − Unrs
max(1− δsnr), ∀n ∈ N, s ∈ S, i ∈ Cs

n, r ∈ R,

zin ≤ Lr −Kr

∑
r∈R ωinr, ∀n ∈ N, i ∈ Cn,

βk, αl ∈ R, ∀k ∈
⋃
s∈S

Ks, l ∈ L

Uinr, U
s
inr, Ũ

s
inr, zin ∈ R, ∀n ∈ N, s ∈ S, i ∈ Cn, r ∈ R,

ωinr, δ
s
nr ∈ {0, 1}, ∀n ∈ N, s ∈ S, i ∈ Cn, r ∈ R,

where Ks represents the set of explanatory variables and Ms the set of normally distributed
parameters considered in class s.
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