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Abstract

Urban planning faces systemic challenges such as climate change, urbanization, and
demographic changes that require bold, integrated responses. However, traditional land use
and transport planning processes are fragmented and not suitable for the transformations
needed. This paper suggests to overcome this blockade by adopting a “deep planning”
approach that spans across the traditional silos. It introduces an approach that combines
large language models (LLMs) with a network-level urban design tool SNMan, to enable
rapid generation of disruptive yet realistic urban scenarios—a process we term “structured
ideation”. A proof-of-concept in Lucerne, Switzerland, demonstrates how the LLM converts
natural language inputs into fundamentally redesigned yet consistent traffic networks
using SNMan. We suggest reinforcement learning to improve the scenario generation
process. The “deep planning” approach unifies creative ideation with real-world consistency,
enabling cities to move beyond incrementalism and develop visionary yet actionable plans.
While centered on urban design, this method introduced in this paper is also applicable
to many other complex systems with or without spatial components.
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1 Introduction

Societies around the world face systemic challenges such as climate change (IPCC, 2022),
urbanization (UN, 2019), and demographic changes. However, existing land use and
transport planning processes do not allow for an appropriate treatment of these pressing
issues. Abstractly, planning processes usually follow three key steps: (1) a spatial master
plan, (2) a transport plan, and (3) an implementation plan. Despite some overlaps, each
step is based primarily on separate experts, data sources, and software tools. Constrained
by these silos, the incorporation of additional complexity caused by systemic challenges
remains incremental, fragmented, and slow. This stifles experimentation and prevents the
exploration of visions beyond mere extrapolation of the status quo.

We argue that traditional planning processes are limited by two inherent “conflicts-by-
design”: The “predict conflict” is due to the system’s reliance on extrapolating the status
quo, limiting the opportunities for experimentation. The “provide-conflict” arises from the
narrow range of possible solutions in the implementation plan, preventing the exploration
of bold innovations. Addressing the systemic challenges requires a combination of an
integrated planning process with structured assessments of possible future scenarios.

The “E-Bike City” project (Axhausen, 2022; Ballo et al., 2023) made important steps
toward breaking through this first impasse by testing a hypothetical policy of dedicating
50% of road space to cycling. Integrating macroscopic transport planning with the physical
allocation of road space on every street, the team has developed a toolkit SNMan (Street
Network Manipulator) (Wiedemann et al., 2025; Ballo et al., 2024) that spans accross
silos of the traditional planning process by allowing an automated planning of road space
and the resulting transportation networks within the same model. In its original form, it
generates alternative multimodal transportation systems that can be implemented solely
by repurposing the existing road space. For example, it can be used to design networks
of one-way streets, while reallocating the remaining road space to cycling paths, bus
lanes, and green spaces. The results are controlled by a structured set of technical design
parameters that need to be provided for each area of study. This approach serves as a
first step toward a holistic planning process that we call “deep planning.”

In this paper, we take the next step toward enabling such a comprehensive planning
approach. We propose to integrate SNMan with a large language model (LLM) that
facilitates a translation between unstructured planning ideas and the technical design
parameters. We term this process “structured ideation”. It allows users to quickly
generate disruptive yet realistic urban futures within real-life constraints, such as existing
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infrastructure.

The rest of this paper is structured as follows: Section 2 shows previous work on AI-based
approaches in urban planning, Section 3 summarizes the vision of this paper in terms
of technical interaction, Section 4 presents a proof of concept, Section 5 elaborates its
possible future development, and Section 6 concludes the paper.

2 Previous Work

Scenario generation and exploration have long been essential elements of urban planning,
supporting processes of conversion, visioning, and evaluation. However, existing approaches
often remain limited by a lack of integration across domains and scales, leading to siloed
workflows and excessive complexity.

Recent developments in generative AI have opened new pathways for producing spatial
plans that respond more flexibly to complex demands. For instance, Zheng et al. (2023)
propose a collaborative human–AI workflow to automate tedious aspects of urban design,
enabling the creation of multiple spatial layout options aligned with different visions.
Yet, the complexity and technical demands of such approaches have so far limited their
practical uptake among planning practitioners.

Another branch of generative tools focuses on the rapid creation of visualizations and
the facilitation of idea exchange among stakeholders. Applications such as UrbanistAI1,
Hectar2, and PlacemakingAI3 can suggest disruptive changes to street segments or public
spaces, often responding to contextual inputs such as pedestrian activity (Valença et al.,
2025). However, these tools typically operate on isolated street segments or locations,
without considering street connectivity or functional interdependencies within broader
street networks.

Advanced applications, combining large language models with deterministic tools, offer a
promising way to overcome this limitation by acting as an interface between users and
specialized planning tools, facilitating structured workflows while maintaining accessibility.
To date, many LLM applications in urban contexts have focused on individual-level tasks

1https://site.urbanistai.com/
2https://www.parametric.se/
3https://www.placemaking.ai/
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such as itinerary planning. Examples include UrbanLLM (Jiang et al., 2024), which
decomposes complex mobility queries into API calls, and ITINERA (Tang et al., 2024),
which supports custom route generation based on points of interest and optimization
tools.

Only recently have researchers begun exploring the role of LLMs in more systemic,
infrastructure-level planning tasks. A promising step was taken by Jin and Ma (2024),
who developed an LLM-based assistant for planning parking infrastructure. Their model
supports users in selecting appropriate data sources, weighting key factors, and preparing
configuration files for existing simulation tools. While this work marks an important shift
toward more integrated LLM-driven planning, it remains focused on a narrow domain
(parking) and depends heavily on specific tools and datasets.

Beyond technical assistance, LLMs also hold potential for making urban planning more
inclusive. For example, Zhou et al. (2024) simulate participatory design processes by
generating LLM agents with varied personas to assess and comment on urban proposals.
Similarly, LLMs have been used for automating urban audits, such as by combining street
view imagery with text-based evaluation (Jang and Kim, 2025), thereby streamlining the
assessment of existing environments.

Other projects aim to blend advanced capabilities with user-friendly design interfaces. For
instance, Digital Blue Foam (DBF)4 integrates GPT-3, a particular LLM model, into an
agent-based tool for designing 15-minute cities. The system supports qualitative scenario
evaluation through SWOT analyses and textual explanations, bridging technical depth
and policy communication.

3 Vision

In contrast to previous work, we envision the use of LLMs for a wide range of planning
applications in combination with databases and specialized tools, such as SNMan. We
imagine three levels of autonomy for the LLM:

1. Restricted execution: The user provides specific instructions on where to place what
kind of infrastructure, using natural language. LLMs translate these instructions

4https://www.digitalbluefoam.com/
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into street network configurations and provide visualizations.
2. Single-mode decision making : The user sets a goal with respect to one type of

infrastructure, such as “reduce on-street parking by 50% and double the amount of
green space and cycling infrastructure”. The LLM must break this problem down
into subtasks and use query optimization tools and simulators to conduct a suitable
analysis.

3. Multi-modal high-level planning : The user provides a high-level goal, such as “reducing
the CO2 emissions by 20%”. This requires scenario development and running
multiple tools, e.g., placing new bike lanes and new EV charging stations. The LLM
could come up with suitable scenarios that provide a broad landscape of possible
modifications and translate them into inputs to the available tools.

4 Proof of Concept

In this section, we present a proof of concept applied to a planning case study. We cover
a small area of four street blocks in downtown Luzern, Switzerland. The area consists of
urban streets with adjacent mixed-use buildings, as well as a thoroughfare with a high
traffic volume and multiple major bus routes. See the “Status Quo” network in Figure 2.
We will test a hypothetical reorganization of road space to reach the city’s climate change
mitigation and adaptation targets.

The network contains information about streets, their width, and their allocation of road
space among travel lanes, on-street parking, cycling lanes, and bicycle parking (represented
by different colors). The underlying data model also contains information about the
(approximate) number of residents and jobs in each building. The network is based on
open geodata from OpenStreetMap, enriched with location-specific publicly available
data sources such as the location of on-street parking spots, public transport routes, and
aggregated jobs and population datasets. See Ballo et al. (2024) for more details on the
process and the data sources used.

To integrate the process in an LLM, we use prompt engineering in GPT-4o, instructing it
to convert the provided prompts to a structured JSON format with predefined attributes.
Figure 1 provides an example of the prompts and corresponding answers. Approximately
twenty manual prompts were necessary to train the LLM toward this behavior. They
included overall instructions like “convert every provided input into a JSON and return it
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without any further information”, a template for the intended JSON structure, and several
corrective prompts to avoid any errors that occurred in the later responses. In a future
development, this process can be automated by adding a further step that validates the
responses and provides corrective feedback to the LLM if needed. Performing experiments
on output structures with different complexity levels and with different LLMs, we can
gain quantitative insights into the computational effort needed and the limits of this
approach.

At this stage, the LLM can reliably convert the unstructured inputs into exact instructions
for SNMan, which then generates the corresponding scenarios. However, note that at this
stage, even the unstructured instructions still need to contain rather specific information
about the individual elements used, like one-way streets, or the desired provision of
parking. So far, it cannot create useful scenarios based on high-level inputs like “adapt the
city to climate change”. In the future, adding further context and learning from impact
assessments of the results can help overcome this challenge. Section 5 elaborates on such
future development.

Next, we use the JSON output to guide the scenario generation in SNMan. The results
for two scenarios are shown in Figure 2. Scenario 1 enforces one-way traffic on all streets
and provides 0.5 parking spaces and 0.3 m2 of green space per person (within a walking
distance of 300 meters). SNMan uses a gravity model to distribute resources like parking
and green spaces such that they correspond to the approximate demand, in this case,
the number of residents and full-time job equivalents in each building. Further, Scenario
1 also transforms the thoroughfare Hirschmattstrasse into a bus-only street and adds
cycling infrastructure where possible. Scenario 2 reduces the parking supply to 0.1 and
increases the green space supply to 1 m2 per person, which also results in more cycling
infrastructure. Note that the resulting scenarios are always compliant with the existing
road infrastructure, parking demand, and connectivity constraints (e.g., the one-way
streets form a strongly connected graph, and the parking is distributed based on expected
demand), without the user having to deal with this complexity.

The resulting networks can be evaluated for their impacts on key factors, such as acces-
sibility or heat island effects. A simplified version of accessibility calculations without
congestion effects can be conducted directly in SNMan.

6
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Figure 1: Converting unstructured inputs to instructions for SNMan in GPT-4o
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Figure 2: Automated creation of consistent scenarios
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5 Future Development

In future developments, the scenario generation in SNMan could incorporate further
dimensions, for example, zoning changes, population growth, energy infrastructure, fiscal
restrictions, or tax codes, all while ensuring consistency. The LLM can be conditioned
with domain-specific knowledge and common design patterns, such as the 15-minute city
or superblocks, and major trade-offs embedded in these concepts. Generating multiple
scenarios in SNMan simultaneously allows users to explore the resulting trade-offs and
select the most desirable scenario.

However, achieving acceptable solutions to complex issues will likely require generating a
large number of scenarios each time. To reduce the computational cost, we need to guide
the LLM to instruct SNMan to generate only the most promising ones, rather than an
extensive range of possible scenarios. This can be solved by adding a loop of reinforcement
learning that feeds the results from each scenario’s impact assessment back to the LLM.
With an adaptation of the “Dreamer” algorithm (Hafner et al., 2025), the LLM could
autonomously explore different scenarios and learn to anticipate the consequences of future
configurations without having to iteratively try them out upon each user’s request. With
such a configuration, the LLM becomes an AI agent that autonomously searches for the
best solutions, while keeping the human planner in the loop for providing the problems,
constraints, and a judgment of the feasibility of resulting scenarios.

In a final stage, even SNMan’s native design constraints, which ensure permanent consis-
tency (e.g., road network connectivity) within the resulting scenarios, could be extracted
by learning from real cities, rather than being hard-coded in the design framework. Like
images or written text, cities exhibit many regularities that must be met to be considered
“consistent”. Future studies may reveal the extent to which such consistency rules can be
inferred from open geodata.

With the above future developments, the resulting method could offer suggestions for
addressing complex urban challenges while respecting the constraints of existing urban
environments. The solutions will span both horizontally, across domains, and vertically,
across levels of detail. For example, it will be able to integrate population growth with
changes to the fiscal situation of a city, future accessibility changes, provision of public
infrastructure, and changes to the transport system. If needed, it can model each scenario
down to the detail of road space allocation to unwind the tradeoffs that typically only
emerge at a detailed phase, where it is often impossible to change the initial vision.

9
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While we have so far focused on a use case in a civic, urban-planning context, the proposed
methodology is generalizable to any complex system, whether or not it includes spatial
components.

6 Discussion and Conclusion

Current planning processes are fragmented, time-consuming, and ill-equipped to explore
the full range of solutions required to tackle today’s systemic challenges. The “E-Bike
City” project made a crucial contribution by expanding the solution space through the
integration of transport planning with the physical allocation and design of streets. “Deep
planning” takes this a step further, generalizing this approach to enable the integration
of any relevant aspect needed to tackle complex, systemic challenges through a process
of “structured ideation”. This approach combines the creative potential of generative AI
(ideation) with the rigor of logical consistency (structured). As a result, visions for the
future of cities move beyond (unrealistic) utopias and instead are designed in ways that
align with real-world constraints. These visions can be quantitatively assessed within the
existing context of land use and transport planning, with the assessment results feeding
back into guiding the generation of future proposals.

Still, “deep planning” does not resolve all challenges facing current planning practices.
Transport planning, in particular, relies on a range of assumptions, such as the valuation
of costs and benefits (see Zani et al. (2023) for a discussion of the difficulties in quantifying
these factors). Future assessments of urban utopia must critically reflect on these input
parameters to avoid the unintentional reproduction of existing paradigms.

The proof of concept presented in this paper illustrates the impressive capabilities of
LLMs to deal with unstructured inputs and use them to control precise, specialized tools.
Future work will explore the possibilities of widening the solution space beyond road space
allocation, leveraging reinforcement learning and “structured ideation” to support planners
in developing truly visionary solutions for existing cities facing systemic challenges.
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