
HPTP: Including Human Preference in Trajectory
Prediction Models

Ahmad Rahimi

Alexandre Alahi

STRC conference paper 2024 May 5, 2024

Monte Verità / Ascona, May 15-17, 2024
24th Swiss Transport Research ConferenceSTRC



       

HPTP: Including Human Preference in Trajectory Prediction
Models

Ahmad Rahimi
VITA
EPFL
ahmad.rahimi@epfl.ch

Alexandre Alahi
VITA
EPFL
alexandre.alahi@epfl.ch

May 5, 2024

Abstract

Recent advancements in vehicle trajectory prediction have notably improved data-driven
models, yet they struggle with complex scenarios, showing limited prediction diversity and
sometimes failing to comply with road constraints. These critical yet hard-to-evaluate issues
hinder the development of safer, more robust models. Reflecting on similar challenges in
natural language processing (NLP), where Reinforcement Learning from Human Feedback
(RLHF) has effectively enhanced model quality, our study investigates integrating similar
human feedback into vehicle trajectory models. We propose a novel approach using a
learned reward model to infuse human judgment, aiming to improve prediction accuracy
and reliability. This research marks a pivotal step in combining artificial intelligence with
human expertise for more precise and secure vehicle trajectory forecasting.
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1 Introduction

Vehicle trajectory prediction is the problem of predicting possible future positions of
agents in a driving scenario, given the past trajectory of the traffic participants, as well as
the map of surrounding environment. It plays a crucial role for the comfortable and safe
planning of autonomous vehicles.

The problem has attracted researchers and companies, shown by the many emerged
benchmarks and papers in the field. Researchers try to solve this problem from different
aspects; some encode the road map and past trajectories as images which are then fed to
convolutional neural networks, while others use the continuous positions of the vehicles
and map centerlines and leverage transformers to solve the forecasting. However, most of
these models have failure cases in predicting all possible future possibilities, or having
predictions going off-road or the opposite direction of the road. Reducing these failure
cases is crucial considering the task is safety critical.

Designing hand-crafted rules and loss functions to guide models correct themselves in these
failure cases is difficult and costly. Therefore we propose a human feedback framework,
where a human provides preference annotation on the predictions of multiple models.
Then these preferences are used to train a reward model, which outputs a higher reward
value for the predictions that are preferred by humans. Finally, the knowledge of human
preference available in this reward model is used to fine-tune the original model with the
objective to increase the reward.

This framework would pave the way to more easily insert human knowledge in vehicle
trajectory prediction models, through simple and cheap preference labels.

2 Related works

Trajectory prediction. Trajectory prediction has been a hot topic in the past few years,
due to the increasing need and importance of the problem for autonomous vehicles. The
pioneer of the field was Alahi et al. (2016) where they used LSTMs to model the temporal
and social interactions between human trajectories. Another challenge which is more
pronounced for vehicle trajectory prediction is the consistency to map of the scenario,
i.e., the predicted trajectories should not go off-road and should be consistent with the





       

road direction. One line of work Liang et al. (2020); Deo et al. (2022) constructs a
graph based on the map of the scene and observes the problem from a graph learning
perspective. Another line of work Gu et al. (2021); Gilles et al. (2021); Mangalam et al.
(2020) decouples the trajectories from their end-goal and first predicts a heatmap of the
end position of the vehicle in the scene, and then rolls out the full trajectory conditioned
on different final goal points. After the very successful spread of transformer architectures
Vaswani et al. (2023) from natural language processing, more recently, many researcher
Shi et al. (2023); Nayakanti et al. (2022); Girgis et al. (2022) are using these architectures
to solve trajectory prediction.

Reinforcement Learning from Human Feedback. A framework called Reinforcement
Learning from Human Feedback (RLHF) was first introduced in the reinforcement learning
field Christiano et al. (2017). They used human feedback to learn the reward model
in an efficient way for tasks where defining a good reward model is difficult for human
researchers. More recently, usage of this framework has extended to fine-tuning large
language models (LLMs) to make their text generations more safe and usefull Ziegler et al.
(2020); Stiennon et al. (2022). It is the de-facto alignment framework for fine-tuning LLMs
nowadays, with all the major chat bots using it, often iteratively Touvron et al. (2023).
Given the similarities between NLP domain and ours, we explore the use of RLHF in
vehicle trajectory prediction. For collecting human preference data and training a reward
model, we use the predictions coming from Girgis et al. (2022) and Deo et al. (2022) which
are transformer and graph based vehicle trajectory prediction models, respectively.

3 Methodology

In this section we will formally describe our methodology. We will first define the trajectory
prediction problem. Then, we introduce three steps to incorporate human feedback into
trajectory prediction models: (i) human preference data collection, (ii) reward model
training, (iii) model finetuning.

Trajectory prediction. Consider a trajectory forecasting problem where an ego agent e

is surrounded by a set of neighboring agents N in a scene with surrounding area map
M. Let sit = (xi

t, y
i
t) denote the state of agent i at time t and st = {s1t , · · · , s

|N |
t } denote

the joint state of all the agents in the scene. Given a sequence of history observations





       

x = (s1, · · · , st), the task is to predict future trajectories of all agents y = (st+1, · · · , sT )
until time T . However, as the trajectory prediction task is multimodal, and given different
intentions of agents in the scene, multiple futures are possible, we allow the model to
predict K possible future trajectories, i.e., ŷ1, · · · , ŷK . Modern forecasting models are
largely composed of encoder-decoder neural networks, where the encoder f(.) first extracts
a compact representation hi

t with respect to agent i and the decoder g(.) subsequently
rolls out its predicted future trajectory ŷi = ŝit+1:T :

hi
t = f(s1:t, i,M),

ŝit+1:T = g(hi
t,M).

Human preference data collection. Given a pool of trajectory prediction models M =

{M1, . . . ,Mm}, we collect a dataset D of the failure cases of models in M. Then, we
sample d ∈ D from the dataset, and Ma,Mb ∈ M from the prediction models. We generate
the predictions ŷa, ŷb of models Ma,Mb, given the failure case d. These predictions are
shown to a human annotator and one of them is chosen to be preferred over the other
one. These predictions together with the preferred index are gathered to form the human
preference dataset DHF containing tuples of form (d, ŷa, ŷb, w ∈ {L,R}).

Reward model training. Having the human feedback dataset DHF , we train a reward
model R which returns a reward r, given the scenario d and predicted trajectory ŷ:

r = R(d, ŷ).

Training procedure on the DHF dataset follows:
For each record (d, ŷa, ŷb, w ∈ {L,R}) in the dataset, ra, rb are calculated using the
reward model:

ra = R(d, ŷa),

rb = R(d, ŷa).

If w = L, then the first prediction is preferred by the human annotator, therefore ra

should be higher than rb, which is enforced by the loss function

LRM = − log
(
σ(ra − rb)

)
.





       

If w = R, then the second prediction is preferred, hence the loss function has the form

LRM = − log
(
σ(rb − ra)

)
.

Trajectory prediction model finetuning. Having a reward model which encodes the
human preference knowledge, we optimize the trajectory prediction model to increase the
reward obtaining by the reward model. The procedure is as follows:
Given a sample from the trajectory prediction dataset d, the trajectory prediction model
M is used to generate predictions ŷ = M(d). Finally, the prediction is fed to the reward
model to get reward r = R(d, ŷ). To maximize the reward, the final loss function is
negative expectation of reward:

LFT = −E[r].

However, if we just aim to maximize the reward, a phenomenon called reward hacking
might happen. Since our reward model is trained on the predictions produced by the raw
models, fine-tuning the model would change the input distribution of the reward model,
making its output rewards not reliable. In some cases, the model might be able to find
some shortcuts in the reward model to artificially increase the reward without learning
something meaningful. In order to prevent reward hacking, we add a KL divergence
penalty to our loss function to keep models predictions from changing too much from the
original model.

4 Experiments

In this section we explain our experimental setup and results. We first describe the
baseline trajectory prediction models we use and the metrics we report, then we present
some statistics of the human preference data we have collected. Reward model training
and prediction model fine-tuning finalize this section.





       

4.1 Experimental setup

Dataset. We use nuScenes dataset Caesar et al. (2020) which is a widely used vehicle
trajectory prediction dataset used in the literature. It has around 40,000 clean and
challenging driving scenarios, with the surrounding area map. nuScenes allows for 10
predicted trajectories per driving scenario, i.e., K = 10.

Baselines. We incorporate two diverse baselines with state of the art performance on
nuScenes, namely AutoBots Girgis et al. (2022) and PGP Deo et al. (2022). The former is
a lightweight transformer based model consisting of social and temporal transformers for
modeling interactions among agents and map. The latter first constructs a directed graph
G based on the map of the surrounding area, where a directed path in G corresponds to a
feasible route of the vehicle in the driving scenario. It then learns weights for each edge in
the graph, representing the probability of using that edge. Given this probabilistic graph,
PGP then generates its final predictions conditioned on random traversals of the graph.

Metrics. There are a few commonly used metrics in the field, which we briefly describe
here:

• minADE stands for minimum average displacement error. It calculates the average
distance between each prediction and the ground truth future trajectory and takes
the minimum ADE among all predictions. Given predictions ŷ1, · · · , ŷK and the
ground truth future trajectory y, the minADE metric could be calculated as:

minADE = min
1≤i≤K

1

T − t

T∑
τ=t+1

||ŷi
τ − yτ ||2.

• minFDE stands for minimum final displacement error. It is very simliar to minADE,
with the difference that the displacement error is only calculated for the final time
step. More precisely, it is defined as:

minFDE = min
1≤i≤K

||ŷi
T − yT ||2.

• Offroad measures the proportion of predicted trajectories that went off-road. It
could be formally defined as:

Offroad =

∑K
i=1 1{ŷi goes off road}

K





       

In this work, we have designed some metrics to better asses the quality of our improved
models predictions. They are defined in the following:

• DDA stands for Distance to Drivable Area. It is a differentiable metric, replacing
the non-differentiable Offroad metric. For each point in a given trajectory ŷ, it
calculates the distance of that point to the closes drivable area, and averages for all
the points. A DDA of 0 means the trajectory is inside drivable area, otherwise it
shows by how much the trajectory has gone off road.

• RDC measures the road direction consistency of the trajectory. For each point in
the predicted trajectory, it measures the distance of this point to the closest point
on the map centerlines, and the angle difference between the trajectory at that point
and the centerline. It penalises trajectories that their direction is not consistent
with that of the road.

• Diversity measures how diverse the set of predictions ŷ1, · · · , ŷK are. It calculates
the sum of pairwise distance between the end points of the predicted trajectories,
more precisely:

Diversity =
∑
i ̸=j

||ŷi
T − ŷj

T ||2

4.2 Human feedback data

We defined the dataset of failure cases D for AutoBots and PGP models to be all the
driving scenarios that either of the two models has a minFDE higher than 5 meters. It
consists of about 1500 driving scenarios. Each of the two models are used to predict
trajectories for the scenarios in D, which are then shown to human annotators. Our
labelers selected the set of 10 trajectories that they thought is more diverse, while also
adhering to driving rules. Each labeling on average took 20 seconds, and you can see the
statistics of chosen models in figure 1.

4.3 Reward model

We design three types of reward models:





       

Figure 1: The distribution of selected options by human labelers.

• Feature Engineering reward model, for which we manually design some differen-
tiable features to be given as input. For each of the 10 trajectories we calculate the
ADE, FDE, DDA, and RDC. We also calculate the minADE, minFDE, Diversity,
and number of offroad trajectories as global features. In total, our feature engineer-
ing reward model receives 44 features and uses a multi layer perceptron (MLP) to
calculate the reward.

• Data Driven reward model uses only the human preference data to learn the
reward, and does not use any domain knowledge. For this model, took the pre-
trained encoder of AutoBots and added several layers to incorporate the predictions
and return the reward.

• Mixture of both, uses the same architecture of the Data Driven model, but in the
final layers before outputting the reward, we include the features from the Feature
Engineering model.

Table 1 shows their performance on human preference prediction accuracy. As expected,
the mixture model performs better than both, having the best of both worlds. Notably,
the Data Driven model alone is not performing well. We believe this is due to the limited
data we have, which makes it hard to learn human preference from data alone.





       

Table 1: Human preference prediction accuracy of the different reward models. The
mixture model performs best.

Reward Model Feature Engineering Data Driven Mixture

Accuracy (%) 78.5 69 80

Table 2: Effect of fine-tuning AutoBots using the reward model coming from human
feedback. The Full Val is the full validation set of nuScenes, while the Hard Val is the
subset of the validation set on which AutoBots has a minFDE higher than 5 meters.

Model Full Val Hard Val
minADE minFDE DDA RDC minADE minFDE DDA RDC

baseline 1.029 1.68 0.26 0.36 3.92 9.28 2.82 2.12
fine-tuned (ours) 1.025 1.68 0.25 0.31 3.80 8.63 2.68 2.00

4.4 Model Fine-tuning

Using the reward model introduced in the previous section, in this section we fine-tune
AutoBots model to increase the reward given by the reward model. We directly use our
fully differentiable reward model on top of the predictions coming from AutoBots model,
and optimise the loss function

L = −E[r]

The comparison of our fine-tuned model with the original AutoBots model could be seen
in table 2. As one could see, all the metrics have been improved compared to the baseline
model (AutoBots), and the improvement is even more pronounced on the hard validation
set on which the model usually failed to predict the ground truth trajectory.
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