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Abstract

In the field of choice modeling, the availability of ever-larger datasets has the potential to
significantly expand our understanding of human behavior, but this prospect is limited
by the poor scalability of discrete choice models (DCMs): as sample sizes increase, the
computational cost of maximum likelihood estimation quickly becomes intractable for
anything but trivial model structures. To tackle this issue, this study builds upon the
idea of using stochastic optimization algorithms for the estimation of DCMs. Specifically,
we investigate the use of a dataset reduction technique to generate weighted batches
that better represent the whole dataset and, as a result, lead the optimization algorithm
to faster convergence. We use a real-world dataset and models of different sizes and
complexity to compare the performance of our approach with existing methods used in
practice.
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1 Introduction

Big data has caused a surge in the amount of data collected on practically any object of
study. In the field of discrete choice analysis, the availability of these ever-larger datasets
could improve our understanding of human decision-making, but that prospect is limited
by the poor scalability of estimation methods for discrete choice models (DCMs).

DCMs are usually estimated via maximum likelihood estimation, which most often relies on
optimization algorithms such as Newton’s method, BFGS (Broyden, 1970; Fletcher, 1970;
Goldfarb, 1970; Shanno, 1970), or one of their variations. These algorithms are extremely
effective when estimating simple models on small datasets, but they quickly become
computationally expensive as model complexity and dataset sizes grow. To circumvent
this limitation, Lederrey et al. (2021) recently proposed using stochastic approximations
of these methods to estimate DCMs. Similar to the stochastic gradient descent method
used to train neural networks, a crucial feature of the algorithms developed by Lederrey
et al. (2021) is the use of subsets of data—or batches—of increasing size throughout
the optimization process: at each iteration, a new batch is randomly drawn whose size is
determined according to the advancement of the process, until the full dataset is eventually
reached and the algorithm converges to the maximum likelihood estimates of the model
parameters. Lederrey et al. (2021) empirically demonstrate that the use of batches in the
earlier stages of the optimization process significantly contributes to reducing the total
computational time of model estimation; similar results are also obtained in some of our
previous studies (Ortelli et al., 2023, 2024).

In this study, we further investigate the use of stochastic algorithms for the estimation of
DCMs. We propose integrating the resampling technique proposed by Ortelli et al. (2024)
within a trust-region framework; the resulting conditional trust-region (CTR) algorithm
builds quadratic approximations of the likelihood function obtained on dynamically
adapted weighted subsamples, which, by construction, are less computationally demanding
than the full dataset. In doing so, the goal is to better guide the optimization algorithm
during its earlier stages, while maintaining a low computational cost per iteration.

The remainder of this paper is organized as follows: Section 2 reviews the main ideas of
trust-region methods and then proceeds to describe our proposed algorithm; Section 3
discusses some preliminary results obtained by comparing the performance of our algorithm
with a basic trust-region algorithm; finally, Section 4 summarizes the findings of this study
and identifies directions for future research.





            

2 Methodology

Consider a choice dataset of N observations (xn, in), each consisting of a vector xn of
explanatory variables associated with individual n, together with the observed choice
in of that same individual among J alternatives. In its simplest form, a discrete choice
model P (i |xn; θ) calculates the probability that individual n chooses any alternative i as
a function of xn and θ, where θ ∈ RL is a vector of L parameters to be estimated.

The values of the model parameters are typically determined through maximum likelihood
estimation (MLE), which consists in finding the values of θ that maximize the joint
probability of replicating all observed choices in the dataset. In practice, however, the log
likelihood is used instead, for numerical reasons:

L(θ) = log
N∏

n=1

P (in |xn; θ) =
N∑

n=1

logP (in |xn; θ) . (1)

The problem of maximizing (1) is typically solved using iterative algorithms such as
Newton’s method, BFGS, or one of their variations. Among such approaches, trust-region
methods are of particular interest (Conn et al., 2000). Those work by defining a region

Bk =
{
θ ∈ RL | ∥θ − θk∥ ≤ dk

}
of radius dk around the current iterate θk, in which a model function mk(θ) serves as a
local approximation of the objective function— i.e., L(θ), in our case. A trial step sk

to a trial point θk+sk is chosen such that the model function within the trust region Bk

is maximized and, after each step, the radius dk of the region is adjusted for the next
iteration, based on the agreement between the model and the true objective function: if
the actual improvement [L(θk+sk)− L(θk)] observed in the objective function is close to
or larger than the expected improvement [mk(θk+sk)−mk(θk)] from the model function,
the trust region is expanded; conversely, if the reduction in the model function turns out to
be a poor predictor of the actual behavior of the log likelihood, the region is contracted.

While many options exist for the model of the objective function, a common choice is a
quadratic formulation, which, in the context of MLE, is given as

mk(θk + sk) = L (θk) + ⟨∇L (θk) , sk⟩+ 1
2

〈
sk,∇2L (θk) sk

〉
, (2)

where ∇L (θk) and ∇2L (θk) are the gradient and the Hessian of L (θk), respectively.





            

While the quadratic formulation is effective, the computational cost of evaluating the
gradient and Hessian at each iteration is high, in particular with large datasets or with
complex model formulations that include many parameters. To mitigate this limitation,
we propose replacing the log likelihood L(θ) and its derivatives ∇L(θ) and ∇2L(θ) in
(2) by some approximations L̃k(θ), ∇L̃k(θ) and ∇2L̃k(θ) that are faster to compute. For
this purpose, we suggest using the resampling technique proposed by Ortelli et al. (2024),
called LSH-DR, to generate weighted subsamples that closely resemble the full dataset.

In LSH-DR, the number of sampled observations solely depends on a parameter w called
the bucket width, and, by construction, so do the quality of the obtained approximations
and the computational burden associated with their evaluation. We therefore recommend
starting with small subsamples so as to speed up the earlier stages of the optimization
process; then, each time the expected improvement [mk(θk+sk)−mk(θk)] turns out to be
a poor predictor of the actual behavior [L(θk+sk)− L(θk)], we need to decide between
reducing the trust-region radius dk or reducing the bucket width wk so as to obtain better
approximations L̃k(θ), ∇L̃k(θ) and ∇2L̃k(θ). We base this choice on the ratio between
[L̃k(θk+sk)− L̃k(θk)] and [mk(θk+sk)−mk(θk)].

Our conditional trust-region (CTR) algorithm is organized as follows.

Input An initial point θ0, an initial bucket width w0 and an initial trust-region radius d0
are given, as are the constants 0 < η̃ ≤ η ≤ η+< 1, γd > 1 and 0 < γw < 1.

Initialization Use w0 to create L̃0 and set k = 0.

Iteration

1. Define a model mk in Bk.
2. Compute a trial step sk such that θk+sk ∈ Bk.1

3. Compute mk(θk + sk) = L̃k (θk) + ⟨∇L̃k (θk) , sk⟩+ 1
2
⟨sk,∇2L̃k (θk) sk⟩ and

ρk =
L(θk+sk)− L(θk)

mk(θk+sk)−mk(θk)
.

If ρk ≥ η, set θk+1 = θk+sk; otherwise, set θk+1 = θk.
4. Compute

ρ̃k =
L̃k(θk+sk)− L̃k(θk)

mk(θk+sk)−mk(θk)
.

If ρk < η and ρ̃k ≥ η̃, set wk+1 = γwwk; otherwise, set wk+1 = wk.

1For instance, using a truncated conjugate-gradient method.





            

5. Set

dk+1 =



γd dk if ρk ≥ η+,

dk if ρk ∈ [η, η+),

dk if ρk < η and ρ̃k ≥ η̃,

dk/2 if ρk < η and ρ̃k < η̃.

6. If

max
j

[∇L̃k(θk)]jθk,j

L̃k(θk)
< ϵ,

stop the algorithm; otherwise, use wk+1 to create L̃k+1 and increment k by one.

3 Experiments

We evaluate the performance of our algorithm on a series of nine increasingly complex
logit, nested logit and cross-nested logit models. Those are based on the London passenger
mode choice (LPMC) dataset (Hillel et al., 2018), which consists of over 81’000 trip
records collected over three years. Four modes are distinguished: walk, cycle, ride public
transport and drive.2 Table 1 reports the number of explanatory variables and parameters
considered in each model.

Table 1: Complexity of the six considered models.

Logit Nested Cross
S M L S M L S M L

Continuous variables 10 11 13 10 11 13 10 11 13
Binary variables 0 15 18 0 15 18 0 15 18
Parameters 13 53 100 14 54 101 15 55 102

Our CTR algorithm is compared to the basic trust region (BTR) algorithm implemented
in Biogeme (Bierlaire, 2023). The two algorithms are used to estimate each model a 100
times;3 the results are then compared in terms of overall running time and number of
epochs. All estimations are performed on two Intel Xeon Platinum 8360Y processors
running at 2.4 GHz, for a total of 72 cores and 512 GB of RAM.

2The “drive” alternative also includes car passenger, taxi, van and motorbike.
3Due to its cost, the estimation of the Cross-L model is repeated only 10 times.





            

Figure 1 compares the obtained overall running times for the two algorithms. For the
more complex models, our CTR algorithm is shown to outperform BTR by a significant
margin. In particular, the Nested-M and Nested-L models are shown to be estimated
twice as fast as with the basic algorithm, whereas an average of 2.3 hours are saved during
the estimation of the Cross-L model. As regards the simpler models, it appears that
the performance of the two algorithms is comparable, but this is due to the additional
time that CTR requires to subsample the dataset; indeed, as shown in Figure 2, CTR is
actually more efficient in the way it uses the data. Logit-S is the model for which this
phenomenon is the most striking: CTR is almost 5 times slower than BTR in terms of
running time, but it actually takes half the epochs to reach convergence.

Figure 1: Running times of the BTR and CTR algorithms.
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4 Conclusion

In this study, we propose a stochastic version of the trust-region algorithm for the
estimation of discrete choice models. Our approach relies on a simple rule to decide
when the batch size needs to be increased, and the batches are obtained from a dataset
reduction technique that is specifically designed to preserve the diversity of observations
in the data, so as to better guide the optimization algorithm. The presented preliminary
results highlight the potential of this approach in the estimation of logit, nested logit and
cross-nested logit models of medium to large sizes.





            

Intended future work focuses on extending our algorithm to mixed logit models and maxi-
mum simulated likelihood estimation, which requires to carefully examine the interaction
between the subsampling method and Monte Carlo integration. Following the work of
Bastin et al. (2006), a promising approach could consist in considered the number of
draws using in Monte Carlo integration as an additional parameter that starts from a low
value and grows iteratively during the optimization process.

Figure 2: Number of epochs of the BTR and CTR algorithms.
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Table 2: Running times and numbers of epochs of the BTR and CTR algorithms.

Model Running time Epochs
BTR CTR BTR CTR

Logit-S 0.4 ± 0.0 1.9 ± 0.2 9.0 ± 0.0 5.8 ± 0.8
Nested-S 3.4 ± 0.0 4.1 ± 0.6 23.0 ± 0.0 10.4 ± 2.8
Cross-S 15.5 ± 0.7 10.2 ± 1.9 16.0 ± 0.1 9.6 ± 1.5
Logit-M 42 ± 2 45 ± 7 8.0 ± 0.0 5.8 ± 0.7
Nested-M 582 ± 18 303 ± 50 26.5 ± 0.7 11.3 ± 2.3
Cross-M 1’350 ± 42 820 ± 117 17.0 ± 0.2 11.2 ± 1.7
Logit-L 447 ± 13 505 ± 70 8.0 ± 0.0 7.5 ± 1.0
Nested-L 7’708 ± 180 3’578 ± 869 27.0 ± 0.1 12.7 ± 3.0
Cross-L 21’743 ± 1’906 13’435 ± 5’960 26.5 ± 1.0 16.9 ± 6.8





            

5 References

Bastin, F., C. Cirillo and P. L. Toint (2006) An adaptive monte carlo algorithm for
computing mixed logit estimators, Computational Management Science, 3, 55–79.

Bierlaire, M. (2023) A short introduction to Biogeme, Technical Report, TRANSP-OR
230620. Transport and Mobility Laboratory, ENAC, EPFL.

Broyden, C. G. (1970) The convergence of a class of double-rank minimization algorithms
1. general considerations, IMA Journal of Applied Mathematics, 6 (1) 76–90.

Conn, A. R., N. I. Gould and P. L. Toint (2000) Trust region methods, SIAM.

Fletcher, R. (1970) A new approach to variable metric algorithms, The computer journal,
13 (3) 317–322.

Goldfarb, D. (1970) A family of variable-metric methods derived by variational means,
Mathematics of computation, 24 (109) 23–26.

Hillel, T., M. Z. Elshafie and Y. Jin (2018) Recreating passenger mode choice-sets for
transport simulation: A case study of London, UK, Proceedings of the Institution of
Civil Engineers-Smart Infrastructure and Construction, 171 (1) 29–42.

Lederrey, G., V. Lurkin, T. Hillel and M. Bierlaire (2021) Estimation of discrete choice mod-
els with hybrid stochastic adaptive batch size algorithms, Journal of choice modelling,
38, 100226.

Ortelli, N., Lapparent, M. (de) and M. Bierlaire (2023) Stochastic adaptive resampling
for the estimation of discrete choice models, paper presented at the Proceedings of the
23rd Swiss Transportation Research Conference.

Ortelli, N., Lapparent, M. (de) and M. Bierlaire (2024) Resampling estimation of discrete
choice models, Journal of Choice Modelling, 50, 100467, ISSN 1755-5345.

Shanno, D. F. (1970) Conditioning of quasi-newton methods for function minimization,
Mathematics of computation, 24 (111) 647–656.




	Introduction
	Methodology
	Experiments
	Conclusion
	References

