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Abstract

Shared micro-mobility services are rapidly expanding yet little is known about travel behaviour.
Understanding mode choice, in particular, is quintessential for incorporating micro-mobility
into transport simulations in order to enable effective transport planning. We contribute by
collecting a large dataset with matching GPS tracks, booking data and survey data for more
than 500 travellers, and by estimating a first choice model between eight transport modes,
including shared e-scooters, shared e-bikes, personal e-scooters and personal e-bikes. We find
that trip distance, precipitation and access distance are fundamental to micro-mobility mode
choice. Substitution patterns reveal that personal e-scooters and e-bikes emit less CO; than the
transport modes they replace, while shared e-scooters and e-bikes emit more CO; than the
transport modes they replace. Our results enable researchers and planners to test the
effectiveness of policy interventions through transport simulations. Service providers can use

our findings on access distances to optimize vehicle repositioning.
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1. Introduction

The usage of shared micro-mobility services has greatly increased in recent years. This
development is perhaps best documented in the USA, where 35M rides were recorded in 2017,
84M rides in 2018 and 136M rides in 2019 (NACTO, 2020). Many shared micro-mobility
companies have since expanded around the globe and now offer their services in North
American, European, Asian and Australian metropolises. In addition to the investor-led
diffusion of shared micro-mobility services, the COVID-19 pandemic has expedited the
diffusion of personal micro-mobility as alternatives to other means of commute.

Given their rapid diffusion, effective regulation and integrated transport planning of
micro-mobility vehicles and services is pertinent. City administrations are further asking how
micro-mobility can contribute to increasingly stringent CO2 reduction targets. Advances in
these directions, however, are hindered by our limited understanding of travel behaviour. Most
importantly, we do not yet comprehensively understand mode choice between shared micro-
mobility services and more established modes (e.qg., public transport, private cars). Closing this
gap is paramount: mode choice is one of the four essential ‘ingredients’ to conventional
transport planning. Furthermore, mode choice models reveal competition and substitution
patterns® that enable determination of the net environmental impact of shared micro-mobility
services more precisely than survey-based methods. In the words of Ortzar and Willumsen
(2011: 207), “the issue of mode choice is probably the single most important element in
transport planning and policy making”.

The scope of the existing empirical literature on shared micro-mobility services strongly
varies by mode. While travel behaviour with shared bikes is relatively well understood (e.g.,

Fishman et al., 2013; Ricci, 2015; Fishman, 2016; Teixeira et al., 2021), the literature on shared

! We find the following definition of modal substitution by Wang et al. (2021: 4) useful: “Modal substitution
means that a certain number of trips made by a new mode of travel displace trips that would have been made by
an existing mode; users substitute the new mode for an existing one (e.g. e-scooter substitutes for walking).”
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e-bikes is more limited (e.g., Campbell et al., 2016; Guidon et al., 2019; He et al., 2019). Shared
e-scooters are the latest addition to the micro-mobility mix and researchers have only recently
begun to analyse them (e.g., Christoforou et al., 2021; McKenzie, 2019; Noland, 2021; Wang
et al., 2021, Younes et al., 2020). Most studies analyse patterns in user characteristics or trip
characteristics of a single mode, or compare data on different modes. While they provide
valuable indications on factors influencing the choice of a single mode, they cannot explain
their relative influence in choice situations between multiple competing modes. To the best of
our knowledge, only one study has previously estimated a mode choice model between several
shared micro-mobility services (Reck et al., 2021a). That study’s use for integrated transport
planning is limited, however, as it includes neither public transport and private modes, nor user
characteristics.

We contribute by estimating the first mode choice model that includes shared micro-
mobility services (e-scooters and e-bikes), public transport, private modes (bike, car, e-bike, e-
scooter) and walking, as well as user characteristics. To do so, we conducted a large-scale
empirical study with 540 participants in Zurich, Switzerland. For each participant, we collected
three months of GPS traces through a smartphone app, booking data for rides conducted with
shared micro-mobility services, and socio-demographic information through two surveys.
Additionally, we collected GPS points of all available shared micro-mobility vehicles in Zurich
at a five-minute interval for the same period through the providers’ APIs (48M GPS points).
We then matched all trips (65K) with selected contextual information (e.g., weather, available
vehicles in close vicinity), user characteristics and non-chosen alternatives, and estimated mode
choice using a mixed logit model. Finally, we demonstrate the practical utility of the model by
deriving precise, distance-based substitution rates for shared micro-mobility services and their

privately-owned counterparts, and by calculating their net environmental impacts.



This paper is structured as follows. In Section 2, we review the literature on shared
micro-mobility mode choice. In Section 3, we introduce our data and the empirical context of
our study. We develop the methodology, estimate the choice model and present the results in
Section 4. In Section 5, we use the estimated model to derive substitution rates and to calculate
the net environmental impacts of shared and personal e-bikes and e-scooters. We conclude with

a discussion of the results and their implications for research, policy and practice in Section 6.

2. Literature review

This section introduces the key results of previous studies on shared micro-mobility services.
We focus on aspects that are hypothesized to influence mode choice, such as user and household
characteristics as well as trip and context characteristics. This literature review both aims to
synthesize general patterns that are found to hold across all shared micro-mobility services, as
well as highlight differences between individual services to inform subsequent model
specification.

Users of shared micro-mobility services are typically young, university-educated males
often with full-time employment and few to no children and cars in their households (NACTO,
2020; Reck and Axhausen; 2021; Shaheen and Cohen, 2019; Wang et al., 2021). Users of shared
e-bikes, in particular, also include a higher shares of middle age groups (He et al., 2019) while
users of shared e-scooters appear to be particularly young (NACTO, 2020; Reck and Axhausen,
2021; Sanders et al., 2020; Wang et al., 2021). Income distributions, in particular for shared e-
scooter users, vary by region, but generally correspond to the regional median income
(NACTO, 2020; Reck and Axhausen, 2021). Vehicle ownership appears to correlate with
shared vehicle usage, i.e. those who own e-scooters/e-bikes are more likely to use shared e-

scooters/e-bikes as well (Fishman et al., 2013; Reck and Axhausen, 2021; Shaheen et al., 2011).



Trips with shared micro-mobility services are shorter than with other motorized modes
of transport (e.g., private cars, public transport). Shared e-scooters, for example, are used for
short distances and most frequently in central business districts or near universities (Bai and
Jiao, 2020; Caspi et al., 2020; Hawa et al., 2021; Reck et al., 2021b; Zuniga-Garcia and
Machemehl, 2020). Shared e-bikes are used for longer distances than e-scooters or regular
bikes, often uphill (Du et al., 2019; Guidon et al., 2019; Guidon et al., 2020; He et al., 2019;
Lazarus et al., 2020; MacArthur et al., 2014; Reck et al., 2021b; Shen et al., 2018; Younes et
al., 2020). Precipitation and low temperatures negatively influence the usage of all shared
micro-mobility services (El-Assi et al., 2017; Gebhart and Noland, 2014; Noland, 2019;
Noland, 2021; Zhu et al., 2020). The evidence on use by time of day for shared e-scooters is
inconclusive: some studies find evidence of two commuting peaks (Caspi et al., 2020;
McKenzie, 2019), others only find single afternoon usage peaks (Bai and Jiao, 2020; Mathew
et al., 2019; Reck et al., 2021b; Younes et al., 2020). In comparison to shared docked bikes,
commuting use of shared e-scooters seems to be less pronounced (McKenzie, 2019; Reck et al.,
2021a; Younes et al., 2020). Finally, vehicle access distance appears to influence usage
(Christoforou et al., 2021).

The above studies provide valuable indications on factors influencing the choice of a
single shared micro-mobility mode. However, they cannot explain the relative influence of
factors in choice situations between multiple competing modes. To the best of our knowledge,
only one study has previously estimated mode choice models between several shared micro-
mobility services based on revealed preference data. Reck et al. (2021a) collected trip-level data
of four different shared micro-mobility modes in Switzerland and estimated a matching mode
choice model. Findings include that shared micro-mobility mode choice is dominated by
distance, elevation rise, and time of day. While docked (e-)bikes are preferred for longer

distances and during commuting times, dockless e-scooters are preferred for shorter distances



and during the night. The density of available vehicles at the point of departure further
influences mode choice (this effect is strongest for dockless fleets). Two key limitations of this
study are that it does not include other transport modes (e.g., public transport, private cars) nor
user characteristics. Thus, the model cannot be used to incorporate shared micro-mobility
services into transport simulations, which is key to effective, integrated transport planning.
We contribute by collecting a first comprehensive dataset that includes revealed
preference data on trips conducted with different shared micro-mobility services (e-scooters, e-
bikes), public transport, private modes (bike, car, e-bike, e-scooter) and walking, and by

estimating a mode choice model between all eight transport modes.

3. Data
3.1. Location and recruitment
Our study is conducted in Zurich, which is Switzerland’s largest city with 403K inhabitants in
the city and 1.5M inhabitants in the metropolitan area. Zurich has a high trip-level public
transport mode share of 41% according to the latest Swiss mobility census (MZMV, 2015). The
share of trips conducted with private cars has been declining steadily over the past years from
40% in 2000 to 25% in 2015. The remaining trips are conducted with active modes (walking:
26%, (e-) bikes: 8%). Several micro-mobility companies operate in Zurich making it a suitable
place to study their usage. They include docked (e-)bikes (Publibike), dockless e-bikes (Bond)
and dockless e-scooters (e.g., Lime, Bird, Tier, Voi).

Data collection began in June 2020. The cantonal statistical office sent invitations to
participate in our mobility study to 10 000 randomly selected inhabits of Zurich municipality
of age 18 to 65. The study included two surveys and three months of GPS smartphone tracking.

Respondents were offered an incentive of 90 CHF? for their participation. All invitation letters

21 CHF = 1.08 USD at the time of writing (29 June 2021).
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included detailed information on the purpose of the study and the methods to collect and process
the data in compliance with the EU General Data Protection Regulation. The study design was
reviewed and approved by the university’s Ethics Committee without reservations.

A total of 1 277 people returned the first survey between June and July 2020. The
resulting response rate of 12.7% is well in the expected range for a survey with a considerable
response burden of 643 points (Schmid and Axhausen, 2019). Only respondents who completed
the first questionnaire were invited to participate in the subsequent GPS tracking and the final
survey. A total of 540 (6%) respondents completed the entire study and their data is used for
the analyses in this paper. The subsequent subsections introduce each data source (survey, GPS

tracks, booking records, contextual data) and discuss the representativeness of our sample.

3.2. Data sources
We designed two online surveys that include a total of 171 questions to elicit socio-
demographic and mobility-related information. All questions and answer categories were
formulated to be equal to the latest available Swiss mobility census to enable direct comparison.
Documentation in English® and questionnaires in German* and French® are available online.
The surveys were structured into the following three blocks:

. person-specific socio-demographic questions (e.g., year of birth, gender,

educational attainment, current occupation),
. household-specific socio-demographic questions (e.g., number of adults and

children, monthly income, mobility tool ownership), and

3 https://www.are.admin.ch/are/en/home/mobility/data/mtmc.html

4 https://www.bfs.admin.ch/bfs/de/home/statistiken/mobilitaet-
verkehr/erhebungen/mzmv.assetdetail.5606052.html

5 https://www.bfs.admin.ch/bfs/fr/home/statistiques/mobilite-transports/enquetes/mzmv.assetdetail.5606053.html
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. person-specific mobility questions (e.g., public season ticket ownership, travel
priorities, knowledge of and membership in shared (micro-) mobility schemes,
frequency of use, access to shared micro-mobility services at home and work).

The smartphone app ‘MyWay’ (available in app stores) was used for GPS tracking. The app
passively collects GPS traces, identifies trips and infers the transport mode used based on a
comparison with public transport timetables and past user mode choice. Each day, the app
presents users with a summary of their realized trips and allows retrospective editing of
transport modes. Figure 1 gives a visual impression of the user interface. Overall, we collected
65 716 trips for 540 respondents with this method, which further divide into 17 004 public
transport trips, 16 211 car trips, 15 393 walking trips, 14 246 bike trips, 2 537 e-bike trips, and

345 e-scooter trips.

Figure 1 GPS tracking app on iPhone SE (left: calendar view, middle: map view, right: edit

mode view).
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We further received booking data for all shared micro-mobility trips booked by our participants
during the study duration through a new intermodal journey planning app ‘yumuv’ (available
in app stores), which was launched by Swiss Federal Railways in June 2020. Matching these
booking records with the GPS tracks allowed us to differentiate private from shared micro-
mobility trips. Out of the total of 2 537 e-bike trips, 287 had matching booking records and
were hence labelled as shared e-bike trips. Out of the total of 345 e-scooter trips, 121 had
matching booking records.

Finally, we added contextual data to each trip. This includes weather data (openly
available in ten-minute intervals for Zurich), as well as the distance to the next available shared
micro-mobility vehicle at the beginning of each trip. In order to compute the latter, Swiss
Federal Railways records the locations of all shared micro-mobility vehicles in Zurich in five-

minute intervals through the providers’ APIs.

3.3. Representativeness

We compare the characteristics of our sample to the latest censuses to investigate its
representativeness. The latest available censuses are the 2018 “Strukturdatenerhebung” (SE)
and the 2015 mobility census “Mikrozensus Mobilitit und Verkehr” (MZMV). While the
former is more current, the latter includes substantially more information on mobility-related
topics.

Table 1 shows the resulting comparison. Our sample is slightly younger (mean: 38
years) than the respondents of both previous censuses (2015: 42 years, 2018: 41 years). It
further includes slightly fewer females (46%) than previous censuses (2015: 50%, 2018: 51%).
The three successive surveys (2015, 2018, 2020) further show two larger societal trends: an
increasing share of respondents holding a tertiary degree (2015: 49%, 2018: 58%, 2020: 76%)

and an increasing share of respondents in full-time employment (2015: 63%, 2018: 68%, 2020:
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81%). In line, the mean monthly household income increased from 2015 (~9,000 CHF) to 2020
(~10,000 CHF). The household structure further exhibits a trend towards single/dual adult
households (2015: 71%, 2018: 84%, 2020: 85%) without children (2015: 62%, 2018: 70%,
2020: 73%). Households in our sample owned slightly fewer cars and slightly more bikes and
e-bikes compared to the 2015 census. They further owned slightly more nationwide and

therefore slightly fewer local public transport season tickets.
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Table 1 Comparison of survey respondents and recent censuses. All values in %.

This survey Census (SE) Census (MZMV)
Year 2020 2018 2015
N (Zurich municipality only) 540 7808 809
Filtered for age groups 18-65 18-65 18-65
Person-specific attributes
Age
18-20 0 3 2
21-30 26 20 16
31-40 38 31 28
41-50 23 22 25
51-60 8 18 21
61-65 5 7 8
Female 46 50 51
Education (tertiary degree) 76 58 49
Full-time employed 81 68 63
PT season ticket ownership
Nation-wide 19 n/a 16
Local (Zurich) 38 n/a 43
Household-specific attributes
Monthly income
4,000 CHF and below 17 n/a 11
4,001 CHF — 8,000 CHF 21 n/a 35
8,001 CHF — 12,000 CHF 23 n/a 26
12,001 CHF — 16,000 CHF 25 n/a 14
16,000 CHF and above 13 n/a 14
Children
0 73 70 62
1 12 14 17
2 and above 15 15 20
Adults
1 26 28 15
2 62 56 56
3 and above 12 15 29
Cars
0 46 n/a 45
1 45 nla 43
2 and above 9 n/a 11
Bikes
0 16 nla 19
1 20 n/a 25
2 and above 63 n/a 56
E-bikes
0 86 n/a 95
1 10 n/a 4
2 and above 4 n/a 1
E-Scooters
0 97 n/a n/a
1 3 n/a n/a
2 and above 0 n/a n/a
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4. Mode choice

In this section, we estimate the mode choice model and present the results.

4.1. Method

We first generate the choice sets by complementing each of the 65 716 observed trips in our
GPS tracking data with the data for the non-chosen alternatives. For each observed trip, we
calculate the non-chosen alternatives with the agent-based transport simulation software
MATSiIm (Horni et al., 2016). The MATSim Zurich scenario has been used extensively in
transport planning research (e.g., Balac et al., 2019; Becker et al., 2020; Horl et al., 2021;
Manser et al., 2020) and provides reliable attribute values for the non-chosen alternatives. Due
to reasons described earlier, MATSIim is limited to public transport, private cars, private bikes
and walking. While we can safely assume that e-bikes and e-scooters are used on the same
routes as private bikes (thus, distances of these alternatives are equal), travel times are likely to
differ. Thus, we constrain our models to use distance parameters only and exclude travel time
parameters.

In addition to trip-specific attributes (distance, access distance, transfers, elevation, time
of day), we include weather (precipitation, wind) and a number of binary person-specific
attributes that have previously been hypothesized to influence micro-mobility mode choice.
These include public transport season ticket ownership (local, nation, bundle®), the number of
vehicles in the household (cars, bikes, e-bikes, e-scooters), age, gender, university education
and employment status. Prices were not included in this choice model as they are heavily
correlated with distances for many transport modes such as private cars, shared e-scooters and

shared e-bikes, and their inclusion would thus lead to multicollinearity issues. For example, the

& Transport bundles sold in Zurich during the time of study included a local public transport season ticket and a
60-minute monthly allowance for shared micro-mobility services.
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shared e-bike operator in Zurich charges an unlocking fee of 1 CHF and an additional per-
kilometre fee of 1 CHF. Table 2 summarizes all attributes used for subsequent model

estimation.

Table 2 Attributes used for model estimation (trip-level statistics).

Attribute Unit Min. 18%Qu. Med. Mean 39Qu. Max.
Trip-specific attributes
Distance km 0.01 1.35 3.01 4.15 5.60 80.28
Access distance!

PT km 0.01 0.29 0.42 0.45 056 4.30

Shared e-hike? km 0.00 0.13 0.22 0.23 033 0.50

Shared e-scooter? km 0.00 0.04 0.07 0.09 0.12 0.50
Transfers count 0 0 1 1 1 4
Elevation km -047  -0.02 0.00 0.00 0.02 047
Morning (6am — 9am) binary 0 0 0 0 0 1
Night (9pm — 5am) binary 0 0 0 0 0 1
Weather
Precipitation mm/h 0.00 0.00 0.00 0.16 0.05 6.14
Wind speed m/s 1.22 3.56 4,73 5.26 6.19 18.68
Person-specific attributes
PT season ticket (local) binary 0.00 0.00 0.00 0.40 1.00 1.00
PT season ticket (nation) binary 0.00 0.00 0.00 0.18 0.00 1.00
PT season ticket (bundle) binary 0.00 0.00 0.00 0.04 0.00 1.00
Cars in household count 0.00 0.00 1.00 0.64 1.00 5.00
Bikes in household count 0.00 1.00 2.00 2.25 3.00 6.00
E-bikes in household count 0.00 0.00 0.00 0.18 0.00 3.00
E-scooters in household count 0.00 0.00 0.00 0.03 0.00 2.00
Age years 19 30 36 38 45 65
Female binary 0.00 0.00 0.00 0.46 1.00 1.00
University education binary 0.00 0.00 1.00 0.74 1.00 1.00
Full-time employment binary 0.00 0.00 1.00 0.69 1.00 1.00

L access distance is only defined for public transport and shared micro-mobility services.
2 when available.

In order to account for taste heterogeneity in mode choice between individuals, we choose a
mixed logit model in panel specification’ and include random alternative-specific constants

(Hensher and Greene, 2003; McFadden and Train, 2000). We built and estimated the model

" The repeated choice nature of panel data is recognized by Apollo and probabilities across individual choice
observations for each individual are multiplied (Hess and Palma, 2019).
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iteratively (i.e., dropping insignificant and insubstantial variables) to obtain the most
parsimonious model possible that simultaneously allows for cross-modal comparisons. Note
that the final model includes four non-linear variables: a squared term for trip distance and
interaction terms between trip distance and precipitation, elevation and wind speed. For model
estimation, we used maximum likelihood with 500 MLHS® draws in the R package Apollo
(Hess and Palma, 2019). Appendix 1 shows the utility functions.

Finally, we set the availabilities. For each person, we verify if each transport mode was
used at least once during the three months. If not, we set the availability of the respective
transport mode to zero for all trips of that person, i.e. remove it from the choice set for this
person. Further, we set the availability of shared e-scooters, shared e-bikes and public transport
to zero for each trip where no vehicle was detected within a 500m radius or no public transport

connection was found.

4.2. Results
Table 3 displays the estimation results. The mixed logit model has an excellent fit with an
adjusted rho-square value of 0.44. In comparison to the reference mode (walking), trip distance
substantially and significantly influences mode choice for all other modes. Precipitation
positively influences mode choice for public transport and cars, and negatively for all micro-
mobility modes, most so for shared e-bikes and e-scooters. Elevation and wind speed further
negatively influence mode choice for non-electric bikes.

One perhaps surprising result concerns the penalty of the access distance for public
transport and shared e-bikes and e-scooters. Access distance for shared e-scooters is penalized

substantially more (-6.16) than access distance for public transport and shared e-bikes (-2.31

8 MLHS draws avoid undesirable correlation patterns that arise when standard Halton sequences are used for
several variables (Hess et al., 2006).
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and -2.36, respectively)®. Users of shared e-scooters are willing to walk an average of 60m and
a maximum of 210m to access a vehicle, while users of shared e-bikes are willing to walk an
average of 200m and up to 490m to access a vehicle. Public transport users are willing to walk
even longer (average: 400m) to reach their preferred stop. We offer two explanations for this
behaviour. First, shared e-scooters are used for substantially shorter distances than both other
modes. Hence, a 200m access distance relative to the overall trip distance is substantially more
for shared e-scooters and thus presents a greater relative burden. Second, shared e-scooters
cannot be pre-reserved in Zurich. The longer the access distance, the more uncertainty in
availability users face. For public transport real-time information about vehicle locations is
available through major trip planning apps (e.g., Google Maps or the city’s public transport
app) and Zurich’s shared e-bikes can be pre-reserved for up to ten minutes.

Several further parameter estimates show the expected results and are thus only briefly
mentioned here. For public transport, season tickets positively influence mode choice while
transfers negatively influence mode choice. The transport bundle further positively influences
mode choice for shared e-scooters. Vehicles ownership positively influences mode choice for
each respective mode. Time of day is significant at a 95% confidence level only for personal e-
bikes and shared e-scooters, positively influencing mode choice during the morning commute
(6am — 9am) for personal e-bikes and mode choice during the night (9pm — 5am) for shared e-
scooters. Most socio-demographic parameter estimates are insignificant at a 95% confidence
level, except for full-time employment, which positively influences mode choice for shared e-

bikes.

® Additional saturation effects of the density of shared micro-mobility fleets were not found.
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Table 3 Estimation results (mixed logit model).

PT Car Bike (pEersBcl)EZI) (Iszhl:rlgg) éfrggﬂﬁ; E(si(;?gg;r

Coef. trat.  Coef. trat.  Coef. trat.  Coef. trat.  Coef. trat.  Coef. trat.  Coef. t.rat.
ASC (W) -3.97 -5857 540 -4334 -347 -4460 -473 -2539 552 -797 485 -1334 435 -7.88
ASC (o) -1.16 -4541  -156 -42.84 -164 -4159 -147 -17.00 -153 -8.29 151 11.16 0.36 2.08
Distance 2.09 106.27 1.94 7279 1.63 67.15 1.74  43.67 226 1751 1.62 9.68 132 11.38
Distance * Distance -0.04 -46.93 -0.03 -40.96 -0.03 -2470 -0.03 -1359 -009 -584 -007 -285 -0.02 -165
Distance * Precipitation 0.75 4.21 0.74 409 -074 -39 -079 -286 -413 -3.00 -058 -0.84 -427 -164
Distance * Elevation -0.15  -3.59
Distance * Wind speed -0.61  -4.73
Access distance -2.31 -35.46 -236  -1.95 -6.16  -2.89
PT transfer -0.64 -29.23
Morning (6am — 9am) 0.34 443 -018 -0.72 0.59 2.26 0.23 0.83
Night (9pm — 5am) -0.15 -132 -0.31  -1.09 0.91 3.57 0.35 1.23
Vehicles in household 1.13  23.62 0.18 8.37 153 20.83 499 11.75
PT season ticket (local) 0.93 14.13
PT season ticket (nation) 0.91 7.65
PT season ticket (bundle) 0.31 4.45 -0.32 -1.12 1.80 7.92
Age 0.02 0.55 -0.01  -0.65
Female 0.55 0.65 -0.74  -1.70
University education 0.05 0.05 -0.18  -0.50
Full-time employment 1.49 2.61 0.51 1.53
Number of individuals 540
Number of observations 65716
Adj. Rho-square 0.44
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5. Substitution patterns and environmental implications
In this section, we first utilize the estimated choice model to derive substitution patterns®® for
each micro-mobility mode. Using these substitution patterns, we then calculate net CO;

emissions.

5.1. Substitution patterns
Methodologically, only a slight adaption to the above choice model is necessary to derive
substitution patterns. We take the subsets of trips conducted with e-scooters and e-bikes and set
the availability for each mode, when chosen, from one to zero. We then apply our model to the
subset of trips with adjusted availabilities to predict alternative mode choice. Conceptually, this
predicted alternative mode is equal to what is commonly described as a substituted mode, i.e.
the mode that would have been chosen if the chosen mode had not been available. Using the
new predictions, we can calculate average substitution rates for e-scooters and e-bikes on a trip-
level and on a km-level. For the trip-level, we divide the number of trips with a particular
substituted mode (e.qg., public transport) by the total number of trips conducted with the micro-
mobility mode (e.g., shared e-scooters). For the km-level, we divide the total distance with a
particular substituted mode by the total distance with the micro-mobility mode.

The resulting substitution patterns are shown in Table 4. We observe that personal e-
bikes replace trips conducted with all four main modes (walk, PT, car, bike), while shared e-

bikes replace substantially fewer car trips and more PT and bike trips. While personal e-scooters

10 Substitution patterns (or ‘substitution rates’) can also be elicited with surveys, i.e. by asking participants about
their last trip and their alternative mode choice. Indeed, this approach is much more common than the choice model
approach developed here. The latter, however, has one key advantage over the former: it allows to calculate precise,
distance-based substitution patterns. These are more adequate for estimating environmental implications than trip-
based substitution patterns stemming from surveys for three reasons. First, it is substituted distance and not
substituted trips that matters when calculating environmental implications. Second, substitution patterns derived
from choice models are valid for all trips, not just the ones explicitly asked for, as they build on user preferences.
Third, substitution patterns derived from choice models are more reliable than those derived from stated preference
surveys, which are prone to biases such as the recall bias or the social desirability bias. Hence, we chose to proceed
with the choice model approach instead of detailing the results from survey data, which we also elicited.
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show a similar substitution pattern to personal e-bikes with the exception of replacing more
walk and fewer car trips, shared e-scooters predominantly replace walk and PT trips. In general,
the trip-level substitution rates exhibit a higher share of walking trips than the km-level

substitution rates. The reason is that walking trips are comparatively short, thus have less impact

in distance-hased measures.

Table 4 Micro-mobility substitution rates (trip-level and km-level) derived from the mode choice
model.

E-Bike (personal) | E-Bike (shared) |E-Scooter (personal| E-Scooter (shared)

Mode trip km trip km trip km trip km
Walk 26% 9% 25% 10% 35% 19% 52% 26%
PT 21% 31% 32% 50% 23% 28% 24% 48%
Car 32% 43% 6% 8% 21% 29% 10% 12%
Bike 21% 17% 37% 33% 22% 24% 11% 11%
E-Bike (personal) 0% 0% 0% 0% 0% 0%
E-Bike (shared) 0% 0% 0% 0% 3% 3%
E-Scooter (personal)] 0% 0% 0% 0% 0% 0%
E-Scooter (shared) 0% 0% 0% 0% 0% 0%

One of the many advantages of this choice model-based approach to deriving substitution
patterns is that precise distance measures for each trip are observed. For surveys, these are
usually imprecise or simply not available as they are based on participants’ memories of recent
trips. Figure 2 displays substitution rates by distance brackets. Two general patterns emerge.
For short trips, all micro-mobility modes mostly replace walking. As the distance grows, the
shares of replaced public transport, bike and car trips increase. Personal e-bikes, however,

replace personal cars substantially more often for longer distances than all other modes.
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Figure 2 Substitution rates for micro-mobility modes by distance.
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5.2. Environmental implications

The impact of a new transport mode on the sustainability of the surrounding transport system

depends not only on the replaced modes, but also on their respective emissions. In this

subsection, we integrate our findings on substitution patterns with previous findings on gross

CO- emissions to calculate the net CO2 emissions of the different micro-mobility modes.
Building on previous work from de Bortoli and Christoforou (2020) and Hollingsworth

et al. (2019), the International Transport Forum (ITF, 2020) recently conducted a
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comprehensive analysis of the life cycle emissions of emerging and more established transport
modes. It took into account not only established components of such analyses (e.g.,
infrastructure wear, vehicle manufacturing, and fuel), but also developed a new component
(operational services, e.g. rebalancing) which is a key differentiating characteristic and an
emission driver of emerging modes such as shared micro-mobility services. Figure 3 shows the

emissions in g CO- per passenger kilometre (pkm) for all modes relevant to this study.

Figure 3 Life cycle CO; emissions per passenger kilometre of selected transport modes

(adapted from ITF, 2020).
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We integrate these findings on CO2 emissions with our findings on substitution patterns for

shared and personal e-bikes and e-scooters to calculate their ‘net emissions’:

net emissions (mode) = gross emissions (mode) —

Z gross emissions (replaced mode;) (D
i
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Consider the following (hypothetical) example: a shared e-scooter (106g CO. / pkm) replaces
public transport (72g CO2 / pkm) and walking (0g CO- / pkm) in equal amounts (i.e., 50% and
50%). The ‘gross emissions’ of shared e-scooters are 106g CO2 / pkm. The gross emissions of
the replaced modes are 36g CO> / pkm (calculate: 50% * 72g CO, / pkm + 50% * Og CO /
pkm). The resulting net emissions of shared e-scooters are thus 70g CO2 / pkm. Positive net
emissions can be interpreted as the additional emissions caused per pkm by the new mode. In
turn, negative net emissions can be interpreted as the emissions saved per pkm by the new
mode.

Table 5 shows the resulting net emissions using the previously derived km-level
substitution rates for all four micro-mobility modes. Note that only km-level substitution rates
(i.e., not trip-level substitution rates) can be used for this type of analysis as trip-level
substitution rates are biased towards short walk trips (see comparison in Table 4). We find that
the CO2 emissions of personal e-bikes (34g CO2 / pkm) and personal e-scooters (42g CO: /
pkm) are lower than the average CO2 emissions of the modes they replace (82g CO / pkm and
69g CO2 / pkm, respectively). Shared e-bikes and shared e-scooters exhibit the opposite pattern:
their CO. emissions are higher than the average CO2 emissions of the modes they replace.
Hence, from a short-term mode choice perspective and under current conditions, only personal
e-bikes and e-scooters contribute to making transport more sustainable, while shared e-bikes
and e-scooters actually emit more CO: than the transport modes they replace. All values can be
regarded as lower limits as a certain share of trips can be assumed to be induced (i.e., not

replacing previous trips), further adding to CO2 emissions.
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Table 5 Average micro-mobility net emissions after substitution effects.

Substituted mode G_ro_ss Substitution patterns (km-level) by micro-mobility mode
emissions

[g CO, / pkm] E-Bike E-Bike E-Scooter E-Scooter

g2 ip (personal) (shared) (personal) (shared)
Walk 0f 8% 8% 18% 20%
PT (avg.) 72 32% 34% 24% 37%
Car (avg.) 135 41% 21% 35% 21%
Bike 171 18% 23% 22% 14%
E-Bike (personal) 341 11% 1% 5%
E-Bike (shared) 831 0% 0% 3%
E-Scooter (personal) 421 1% 2% 1%
E-Scooter (shared) 1067 0% 1% 0%
Emissions of substituted modes 82 62 69 62
Emissions of micro-mobility mode 347 83" 427 106"
Net emissions [g CO, / pkm] -48 21 -27 44

T Emission calculations drawn from ITF (2020).

Finally, we know that substitution patterns vary with trip distance (cf. Figure 3). Hence, net

emissions will differ by distance bracket. Figure 4 visualizes this relationship. We find that net

emissions for personal e-bikes and e-scooters are positive for short distances as they

predominantly replace walking for short trips. For longer distances, they replace cars and public

transport substantially more often, resulting in overall negative net emissions. Net emissions of

shared e-bikes and e-scooters are positive regardless of the distance bracket and highest for

short distances.
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6. Contributions and conclusions
This is the first study to collect revealed preference data for and to estimate a comprehensive
mode choice model between several shared and personal micro-mobility modes (e-bikes, e-
scooters) and more established transport modes (public transport, car, bike, walk). Our
contributions to research, policy and practice are threefold.

First, our results build the foundation to incorporate micro-mobility into transport

network simulations to understand and to forecast their impact at system level and under
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varying policy scenarios. All else equal, the choice model reveals that trip distance,
precipitation and access distance are fundamental to shared micro-mobility mode choice. Users
are willing to walk between ~60m and ~200m to access shared e-scooters and shared e-bikes,
respectively. Pre-booking functionality decreases the disutility of larger access distances. These
results are not only useful to researchers and practitioners aiming to extend transport network
simulations, but can also inform service provider’s decisions on how to optimize their vehicle
repositioning schemes.

Second, we demonstrate how choice models can be used to derive distance-based
substitution patterns. Distance-based substitution patterns are more adequate for estimating
environmental implications than common trip-based substitution patterns that are elicited
through surveys for several reasons. First, it is substituted distance and not substituted trips that
matters when calculating environmental implications. Second, substitution patterns derived
from choice models are valid for all trips, not just the ones explicitly asked for, as they build on
user preferences. Third, substitution patterns derived from choice models are more reliable than
those derived from stated preference surveys, which are prone to biases such as the recall bias
or the social desirability bias. This methodological contribution will gain in relevance as further
new mobility services are introduced and their environmental implications will need to be
assessed.

Third, our results yield direct policy implications for cities aiming to reduce transport-
related CO2 emissions. We show that personal e-bikes and e-scooters emit less CO> than the
transport modes they replace, while shared e-bikes and e-scooters emit more CO; than the
transport modes they replace. This finding challenges a common vision in transport that
‘sharing is caring’ for the environment. For micro-mobility, the relationship indeed appears to
be reverse. One the one hand, city administrations can use these insights to justify public

subsidies for personal e-bike / e-scooter sales and investments in bike lanes to increase their
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mode share further. On the other hand, our results suggest caution when admitting and licensing
shared micro-mobility providers. City administrations can collaborate with and require
providers to improve the two main sources of CO. emissions of shared micro-mobility
(operational services and vehicle manufacturing) while safeguarding their potential to improve
transit catchment areas and to ease peak-time transit occupancy (e.g., Bielinski et al., 2021; de
Bortoli and Christoforou, 2020; ITF, 2020). While shared e-bikes and e-scooters might increase
CO2 emissions in the short-term, they could help spark sustainable mobility transitions in the
long-term if usage leads to ownership. Clearly, longitudinal studies are needed to establish this
relationship.

Finally, we acknowledge that this study has limitations. Although COVID-19 incidence
rates were comparatively low in Switzerland during the time of study!!, travel behaviour was
still affected. Most of all, public transport usage remained lower than usual (Molloy et al.,

2021). Our study thus potentially over-estimates public transport substitution by other modes.

11 The 7-day incidence rate per 100,000 inhabitants ranged between 1.4 on 1 June and 27.0 on 1 October. In
comparison, the highest rate was reported on 11 November (666.3).
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Appendix 1

We specify the utility functions for the mixed logit model using the abbreviations as follows:

Modes
WA Walk

PT  Public transport

CA Car
Bl Bike
PEB Private e-bike

SEB Shared e-bike
PES Private e-scooter

SES Shared e-scooter

Utility functions

UWA = ASCWA

Attributes

D] Trip distance
AD  Access distance
TR Transfers

EL  Elevation

MO  Morning

NI Night

PR  Precipitation
Wil Wind

PTL

PTC

PTB

HHC

HHB

HHE

HHS

UE

FE

AG

FE

PT season ticket (local)
PT season ticket (nation)
PT season ticket (bundle)
Cars in household

Bikes in household
E-bikes in household
E-scooters in household
University education
Full-time employment
Age

Female

Upr = ASCpr + Bprp, * DI + Bprp,, * DI? + Bprypp, * PR * DI + Bpr, % AD + fpr,, *

TR + Bprpyp * PTB + Borpy, * PTL + Bprpy, * PTC

Uca = ASCca + Bcap, * DI + Bcap,, * DI* + Bcappp, * PR * DI + By, * HHC

Ui = ASCp; + Bpip, * DI + Baipy, * DI* + Bipgp, * PR * DI + By » HHB + By,

WI DI + Bpy,, * EL * DI

Upgp = ASCpgp + Bpesy, * DI + Bpes,,, * DI* + Bresppp, * PR * DI + Bpgpy,,, . * HHE +

BrEesy, * MO + Bpgg,, * NI
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Usgp = ASCspp + Bsgpp, * DI + Bsgg,,, * DI* + Bsgppgp, * PR * DI + Bsppppy, * PTB +

Bses,p, * AD + Bsgpy,, * MO + Bsppy, * NI + Bsgp . * AG + Bsgpyy * FE + Bsgpyy *

UE + Bsgp,, * FT
Upgs = ASCpgs + Bpesy, * DI + Bpgs,,, * DI* + Bresprp; * PR * DI + Bpgs,,,o * HHS +

Bpesyo * MO + Bpesy, * NI

Usgs = ASCsgs + Bsgsy, * DI + Bsgsp,, * DI* + Bsgsppp, * PR * DI 4 Bsgs,p, ¥ PTB +

Bses,p * AD + Bsgsy * MO + Bsgsy, * NI + Bsgs, . * AG + Bsgspp * FE + Bspsyp *

UE + Bsgs,, * FT

Note that all alternative specific constants are random to account for taste heterogeneity in

mode choice between individuals.
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