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Abstract 26 

Shared micro-mobility services are rapidly expanding yet little is known about travel behaviour. 27 

Understanding mode choice, in particular, is quintessential for incorporating micro-mobility 28 

into transport simulations in order to enable effective transport planning. We contribute by 29 

collecting a large dataset with matching GPS tracks, booking data and survey data for more 30 

than 500 travellers, and by estimating a first choice model between eight transport modes, 31 

including shared e-scooters, shared e-bikes, personal e-scooters and personal e-bikes. We find 32 

that trip distance, precipitation and access distance are fundamental to micro-mobility mode 33 

choice. Substitution patterns reveal that personal e-scooters and e-bikes emit less CO2 than the 34 

transport modes they replace, while shared e-scooters and e-bikes emit more CO2 than the 35 

transport modes they replace. Our results enable researchers and planners to test the 36 

effectiveness of policy interventions through transport simulations. Service providers can use 37 

our findings on access distances to optimize vehicle repositioning. 38 

 39 
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1. Introduction 46 

The usage of shared micro-mobility services has greatly increased in recent years. This 47 

development is perhaps best documented in the USA, where 35M rides were recorded in 2017, 48 

84M rides in 2018 and 136M rides in 2019 (NACTO, 2020). Many shared micro-mobility 49 

companies have since expanded around the globe and now offer their services in North 50 

American, European, Asian and Australian metropolises. In addition to the investor-led 51 

diffusion of shared micro-mobility services, the COVID-19 pandemic has expedited the 52 

diffusion of personal micro-mobility as alternatives to other means of commute. 53 

Given their rapid diffusion, effective regulation and integrated transport planning of 54 

micro-mobility vehicles and services is pertinent. City administrations are further asking how 55 

micro-mobility can contribute to increasingly stringent CO2 reduction targets. Advances in 56 

these directions, however, are hindered by our limited understanding of travel behaviour. Most 57 

importantly, we do not yet comprehensively understand mode choice between shared micro-58 

mobility services and more established modes (e.g., public transport, private cars). Closing this 59 

gap is paramount: mode choice is one of the four essential ‘ingredients’ to conventional 60 

transport planning. Furthermore, mode choice models reveal competition and substitution 61 

patterns1 that enable determination of the net environmental impact of shared micro-mobility 62 

services more precisely than survey-based methods. In the words of Ortúzar and Willumsen 63 

(2011: 207), “the issue of mode choice is probably the single most important element in 64 

transport planning and policy making”. 65 

The scope of the existing empirical literature on shared micro-mobility services strongly 66 

varies by mode. While travel behaviour with shared bikes is relatively well understood (e.g., 67 

Fishman et al., 2013; Ricci, 2015; Fishman, 2016; Teixeira et al., 2021), the literature on shared 68 

                                                           
1 We find the following definition of modal substitution by Wang et al. (2021: 4) useful: “Modal substitution 

means that a certain number of trips made by a new mode of travel displace trips that would have been made by 

an existing mode; users substitute the new mode for an existing one (e.g. e-scooter substitutes for walking).” 
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e-bikes is more limited (e.g., Campbell et al., 2016; Guidon et al., 2019; He et al., 2019). Shared 69 

e-scooters are the latest addition to the micro-mobility mix and researchers have only recently 70 

begun to analyse them (e.g., Christoforou et al., 2021; McKenzie, 2019; Noland, 2021; Wang 71 

et al., 2021, Younes et al., 2020). Most studies analyse patterns in user characteristics or trip 72 

characteristics of a single mode, or compare data on different modes. While they provide 73 

valuable indications on factors influencing the choice of a single mode, they cannot explain 74 

their relative influence in choice situations between multiple competing modes. To the best of 75 

our knowledge, only one study has previously estimated a mode choice model between several 76 

shared micro-mobility services (Reck et al., 2021a). That study’s use for integrated transport 77 

planning is limited, however, as it includes neither public transport and private modes, nor user 78 

characteristics. 79 

We contribute by estimating the first mode choice model that includes shared micro-80 

mobility services (e-scooters and e-bikes), public transport, private modes (bike, car, e-bike, e-81 

scooter) and walking, as well as user characteristics. To do so, we conducted a large-scale 82 

empirical study with 540 participants in Zurich, Switzerland. For each participant, we collected 83 

three months of GPS traces through a smartphone app, booking data for rides conducted with 84 

shared micro-mobility services, and socio-demographic information through two surveys. 85 

Additionally, we collected GPS points of all available shared micro-mobility vehicles in Zurich 86 

at a five-minute interval for the same period through the providers’ APIs (48M GPS points). 87 

We then matched all trips (65K) with selected contextual information (e.g., weather, available 88 

vehicles in close vicinity), user characteristics and non-chosen alternatives, and estimated mode 89 

choice using a mixed logit model. Finally, we demonstrate the practical utility of the model by 90 

deriving precise, distance-based substitution rates for shared micro-mobility services and their 91 

privately-owned counterparts, and by calculating their net environmental impacts. 92 
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This paper is structured as follows. In Section 2, we review the literature on shared 93 

micro-mobility mode choice. In Section 3, we introduce our data and the empirical context of 94 

our study. We develop the methodology, estimate the choice model and present the results in 95 

Section 4. In Section 5, we use the estimated model to derive substitution rates and to calculate 96 

the net environmental impacts of shared and personal e-bikes and e-scooters. We conclude with 97 

a discussion of the results and their implications for research, policy and practice in Section 6. 98 

 99 

2. Literature review 100 

This section introduces the key results of previous studies on shared micro-mobility services. 101 

We focus on aspects that are hypothesized to influence mode choice, such as user and household 102 

characteristics as well as trip and context characteristics. This literature review both aims to 103 

synthesize general patterns that are found to hold across all shared micro-mobility services, as 104 

well as highlight differences between individual services to inform subsequent model 105 

specification. 106 

Users of shared micro-mobility services are typically young, university-educated males 107 

often with full-time employment and few to no children and cars in their households (NACTO, 108 

2020; Reck and Axhausen; 2021; Shaheen and Cohen, 2019; Wang et al., 2021). Users of shared 109 

e-bikes, in particular, also include a higher shares of middle age groups (He et al., 2019) while 110 

users of shared e-scooters appear to be particularly young (NACTO, 2020; Reck and Axhausen, 111 

2021; Sanders et al., 2020; Wang et al., 2021). Income distributions, in particular for shared e-112 

scooter users, vary by region, but generally correspond to the regional median income 113 

(NACTO, 2020; Reck and Axhausen, 2021). Vehicle ownership appears to correlate with 114 

shared vehicle usage, i.e. those who own e-scooters/e-bikes are more likely to use shared e-115 

scooters/e-bikes as well (Fishman et al., 2013; Reck and Axhausen, 2021; Shaheen et al., 2011). 116 
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Trips with shared micro-mobility services are shorter than with other motorized modes 117 

of transport (e.g., private cars, public transport). Shared e-scooters, for example, are used for 118 

short distances and most frequently in central business districts or near universities (Bai and 119 

Jiao, 2020; Caspi et al., 2020; Hawa et al., 2021; Reck et al., 2021b; Zuniga-Garcia and 120 

Machemehl, 2020). Shared e-bikes are used for longer distances than e-scooters or regular 121 

bikes, often uphill (Du et al., 2019; Guidon et al., 2019; Guidon et al., 2020; He et al., 2019; 122 

Lazarus et al., 2020; MacArthur et al., 2014; Reck et al., 2021b; Shen et al., 2018; Younes et 123 

al., 2020). Precipitation and low temperatures negatively influence the usage of all shared 124 

micro-mobility services (El-Assi et al., 2017; Gebhart and Noland, 2014; Noland, 2019; 125 

Noland, 2021; Zhu et al., 2020). The evidence on use by time of day for shared e-scooters is 126 

inconclusive: some studies find evidence of two commuting peaks (Caspi et al., 2020; 127 

McKenzie, 2019), others only find single afternoon usage peaks (Bai and Jiao, 2020; Mathew 128 

et al., 2019; Reck et al., 2021b; Younes et al., 2020). In comparison to shared docked bikes, 129 

commuting use of shared e-scooters seems to be less pronounced (McKenzie, 2019; Reck et al., 130 

2021a; Younes et al., 2020). Finally, vehicle access distance appears to influence usage 131 

(Christoforou et al., 2021). 132 

The above studies provide valuable indications on factors influencing the choice of a 133 

single shared micro-mobility mode. However, they cannot explain the relative influence of 134 

factors in choice situations between multiple competing modes. To the best of our knowledge, 135 

only one study has previously estimated mode choice models between several shared micro-136 

mobility services based on revealed preference data. Reck et al. (2021a) collected trip-level data 137 

of four different shared micro-mobility modes in Switzerland and estimated a matching mode 138 

choice model. Findings include that shared micro-mobility mode choice is dominated by 139 

distance, elevation rise, and time of day. While docked (e-)bikes are preferred for longer 140 

distances and during commuting times, dockless e-scooters are preferred for shorter distances 141 
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and during the night. The density of available vehicles at the point of departure further 142 

influences mode choice (this effect is strongest for dockless fleets). Two key limitations of this 143 

study are that it does not include other transport modes (e.g., public transport, private cars) nor 144 

user characteristics. Thus, the model cannot be used to incorporate shared micro-mobility 145 

services into transport simulations, which is key to effective, integrated transport planning. 146 

We contribute by collecting a first comprehensive dataset that includes revealed 147 

preference data on trips conducted with different shared micro-mobility services (e-scooters, e-148 

bikes), public transport, private modes (bike, car, e-bike, e-scooter) and walking, and by 149 

estimating a mode choice model between all eight transport modes. 150 

 151 

3. Data 152 

3.1. Location and recruitment 153 

Our study is conducted in Zurich, which is Switzerland’s largest city with 403K inhabitants in 154 

the city and 1.5M inhabitants in the metropolitan area. Zurich has a high trip-level public 155 

transport mode share of 41% according to the latest Swiss mobility census (MZMV, 2015). The 156 

share of trips conducted with private cars has been declining steadily over the past years from 157 

40% in 2000 to 25% in 2015. The remaining trips are conducted with active modes (walking: 158 

26%, (e-) bikes: 8%). Several micro-mobility companies operate in Zurich making it a suitable 159 

place to study their usage. They include docked (e-)bikes (Publibike), dockless e-bikes (Bond) 160 

and dockless e-scooters (e.g., Lime, Bird, Tier, Voi). 161 

Data collection began in June 2020. The cantonal statistical office sent invitations to 162 

participate in our mobility study to 10 000 randomly selected inhabits of Zurich municipality 163 

of age 18 to 65. The study included two surveys and three months of GPS smartphone tracking. 164 

Respondents were offered an incentive of 90 CHF2 for their participation. All invitation letters 165 

                                                           
2 1 CHF = 1.08 USD at the time of writing (29 June 2021). 
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included detailed information on the purpose of the study and the methods to collect and process 166 

the data in compliance with the EU General Data Protection Regulation. The study design was 167 

reviewed and approved by the university’s Ethics Committee without reservations. 168 

A total of 1 277 people returned the first survey between June and July 2020. The 169 

resulting response rate of 12.7% is well in the expected range for a survey with a considerable 170 

response burden of 643 points (Schmid and Axhausen, 2019). Only respondents who completed 171 

the first questionnaire were invited to participate in the subsequent GPS tracking and the final 172 

survey. A total of 540 (6%) respondents completed the entire study and their data is used for 173 

the analyses in this paper. The subsequent subsections introduce each data source (survey, GPS 174 

tracks, booking records, contextual data) and discuss the representativeness of our sample. 175 

 176 

3.2. Data sources 177 

We designed two online surveys that include a total of 171 questions to elicit socio-178 

demographic and mobility-related information. All questions and answer categories were 179 

formulated to be equal to the latest available Swiss mobility census to enable direct comparison. 180 

Documentation in English3 and questionnaires in German4 and French5 are available online. 181 

The surveys were structured into the following three blocks: 182 

• person-specific socio-demographic questions (e.g., year of birth, gender, 183 

educational attainment, current occupation), 184 

• household-specific socio-demographic questions (e.g., number of adults and 185 

children, monthly income, mobility tool ownership), and 186 

                                                           
3 https://www.are.admin.ch/are/en/home/mobility/data/mtmc.html 
4 https://www.bfs.admin.ch/bfs/de/home/statistiken/mobilitaet-

verkehr/erhebungen/mzmv.assetdetail.5606052.html 
5 https://www.bfs.admin.ch/bfs/fr/home/statistiques/mobilite-transports/enquetes/mzmv.assetdetail.5606053.html 
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• person-specific mobility questions (e.g., public season ticket ownership, travel 187 

priorities, knowledge of and membership in shared (micro-) mobility schemes, 188 

frequency of use, access to shared micro-mobility services at home and work). 189 

The smartphone app ‘MyWay’ (available in app stores) was used for GPS tracking. The app 190 

passively collects GPS traces, identifies trips and infers the transport mode used based on a 191 

comparison with public transport timetables and past user mode choice. Each day, the app 192 

presents users with a summary of their realized trips and allows retrospective editing of 193 

transport modes. Figure 1 gives a visual impression of the user interface. Overall, we collected 194 

65 716 trips for 540 respondents with this method, which further divide into 17 004 public 195 

transport trips, 16 211 car trips, 15 393 walking trips, 14 246 bike trips, 2 537 e-bike trips, and 196 

345 e-scooter trips.  197 

 198 

Figure 1 GPS tracking app on iPhone SE (left: calendar view, middle: map view, right: edit 199 

mode view). 200 

 201 

 202 

 203 

 204 

 205 

 206 

 207 

 208 

 209 

 210 

  211 
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We further received booking data for all shared micro-mobility trips booked by our participants 212 

during the study duration through a new intermodal journey planning app ‘yumuv’ (available 213 

in app stores), which was launched by Swiss Federal Railways in June 2020. Matching these 214 

booking records with the GPS tracks allowed us to differentiate private from shared micro-215 

mobility trips. Out of the total of 2 537 e-bike trips, 287 had matching booking records and 216 

were hence labelled as shared e-bike trips. Out of the total of 345 e-scooter trips, 121 had 217 

matching booking records. 218 

Finally, we added contextual data to each trip. This includes weather data (openly 219 

available in ten-minute intervals for Zurich), as well as the distance to the next available shared 220 

micro-mobility vehicle at the beginning of each trip. In order to compute the latter, Swiss 221 

Federal Railways records the locations of all shared micro-mobility vehicles in Zurich in five-222 

minute intervals through the providers’ APIs. 223 

 224 

3.3. Representativeness 225 

We compare the characteristics of our sample to the latest censuses to investigate its 226 

representativeness. The latest available censuses are the 2018 “Strukturdatenerhebung” (SE) 227 

and the 2015 mobility census “Mikrozensus Mobilität und Verkehr” (MZMV). While the 228 

former is more current, the latter includes substantially more information on mobility-related 229 

topics. 230 

Table 1 shows the resulting comparison. Our sample is slightly younger (mean: 38 231 

years) than the respondents of both previous censuses (2015: 42 years, 2018: 41 years). It 232 

further includes slightly fewer females (46%) than previous censuses (2015: 50%, 2018: 51%). 233 

The three successive surveys (2015, 2018, 2020) further show two larger societal trends: an 234 

increasing share of respondents holding a tertiary degree (2015: 49%, 2018: 58%, 2020: 76%) 235 

and an increasing share of respondents in full-time employment (2015: 63%, 2018: 68%, 2020: 236 
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81%). In line, the mean monthly household income increased from 2015 (~9,000 CHF) to 2020 237 

(~10,000 CHF). The household structure further exhibits a trend towards single/dual adult 238 

households (2015: 71%, 2018: 84%, 2020: 85%) without children (2015: 62%, 2018: 70%, 239 

2020: 73%). Households in our sample owned slightly fewer cars and slightly more bikes and 240 

e-bikes compared to the 2015 census. They further owned slightly more nationwide and 241 

therefore slightly fewer local public transport season tickets.  242 
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Table 1 Comparison of survey respondents and recent censuses. All values in %. 

 This survey Census (SE) Census (MZMV) 

Year 2020 2018 2015 

N (Zurich municipality only) 540 7808 809 

Filtered for age groups 18-65 18-65 18-65 

Person-specific attributes    

Age    

18-20 0 3 2 

21-30 26 20 16 

31-40 38 31 28 

41-50 23 22 25 

51-60 8 18 21 

61-65 5 7 8 

Female 46 50 51 

Education (tertiary degree) 76 58 49 

Full-time employed 81 68 63 

PT season ticket ownership    

Nation-wide 19 n/a 16 

Local (Zurich) 38 n/a 43 

Household-specific attributes    

Monthly income    

4,000 CHF and below 17 n/a 11 

4,001 CHF – 8,000 CHF 21 n/a 35 

8,001 CHF – 12,000 CHF 23 n/a 26 

12,001 CHF – 16,000 CHF 25 n/a 14 

16,000 CHF and above 13 n/a 14 

Children    

0 73 70 62 

1 12 14 17 

2 and above 15 15 20 

Adults    

1 26 28 15 

2 62 56 56 

3 and above 12 15 29 

Cars    

0 46 n/a 45 

1 45 n/a 43 

2 and above 9 n/a 11 

Bikes    

0 16 n/a 19 

1 20 n/a 25 

2 and above 63 n/a 56 

E-bikes    

0 86 n/a 95 

1 10 n/a 4 

2 and above 4 n/a 1 

E-Scooters    

0 97 n/a n/a 

1 3 n/a n/a 

2 and above 0 n/a n/a 

 243 
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4. Mode choice 244 

In this section, we estimate the mode choice model and present the results. 245 

 246 

4.1. Method 247 

We first generate the choice sets by complementing each of the 65 716 observed trips in our 248 

GPS tracking data with the data for the non-chosen alternatives. For each observed trip, we 249 

calculate the non-chosen alternatives with the agent-based transport simulation software 250 

MATSim (Horni et al., 2016). The MATSim Zurich scenario has been used extensively in 251 

transport planning research (e.g., Balac et al., 2019; Becker et al., 2020; Hörl et al., 2021; 252 

Manser et al., 2020) and provides reliable attribute values for the non-chosen alternatives. Due 253 

to reasons described earlier, MATSim is limited to public transport, private cars, private bikes 254 

and walking. While we can safely assume that e-bikes and e-scooters are used on the same 255 

routes as private bikes (thus, distances of these alternatives are equal), travel times are likely to 256 

differ. Thus, we constrain our models to use distance parameters only and exclude travel time 257 

parameters. 258 

In addition to trip-specific attributes (distance, access distance, transfers, elevation, time 259 

of day), we include weather (precipitation, wind) and a number of binary person-specific 260 

attributes that have previously been hypothesized to influence micro-mobility mode choice. 261 

These include public transport season ticket ownership (local, nation, bundle6), the number of 262 

vehicles in the household (cars, bikes, e-bikes, e-scooters), age, gender, university education 263 

and employment status. Prices were not included in this choice model as they are heavily 264 

correlated with distances for many transport modes such as private cars, shared e-scooters and 265 

shared e-bikes, and their inclusion would thus lead to multicollinearity issues. For example, the 266 

                                                           
6 Transport bundles sold in Zurich during the time of study included a local public transport season ticket and a 

60-minute monthly allowance for shared micro-mobility services. 
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shared e-bike operator in Zurich charges an unlocking fee of 1 CHF and an additional per-267 

kilometre fee of 1 CHF. Table 2 summarizes all attributes used for subsequent model 268 

estimation. 269 

 270 

Table 2 Attributes used for model estimation (trip-level statistics). 

Attribute Unit Min. 1st Qu. Med. Mean 3rd Qu. Max. 

Trip-specific attributes       

Distance km 0.01 1.35 3.01 4.15 5.60 80.28 

Access distance1        

  PT km 0.01 0.29 0.42 0.45 0.56 4.30 

  Shared e-bike2 km 0.00 0.13 0.22 0.23 0.33 0.50 

  Shared e-scooter2 km 0.00 0.04 0.07 0.09 0.12 0.50 

Transfers count 0 0 1 1 1 4 

Elevation  km -0.47 -0.02 0.00 0.00 0.02 0.47 

Morning (6am – 9am) binary 0 0 0 0 0 1 

Night (9pm – 5am) binary 0 0 0 0 0 1 

Weather        

Precipitation mm/h 0.00 0.00 0.00 0.16 0.05 6.14 

Wind speed m/s 1.22 3.56 4.73 5.26 6.19 18.68 

Person-specific attributes      

PT season ticket (local) binary 0.00 0.00 0.00 0.40 1.00 1.00 

PT season ticket (nation) binary 0.00 0.00 0.00 0.18 0.00 1.00 

PT season ticket (bundle) binary 0.00 0.00 0.00 0.04 0.00 1.00 

Cars in household count 0.00 0.00 1.00 0.64 1.00 5.00 

Bikes in household count 0.00 1.00 2.00 2.25 3.00 6.00 

E-bikes in household count 0.00 0.00 0.00 0.18 0.00 3.00 

E-scooters in household count 0.00 0.00 0.00 0.03 0.00 2.00 

Age years 19 30 36 38 45 65 

Female binary 0.00 0.00 0.00 0.46 1.00 1.00 

University education binary 0.00 0.00 1.00 0.74 1.00 1.00 

Full-time employment binary 0.00 0.00 1.00 0.69 1.00 1.00 
1 access distance is only defined for public transport and shared micro-mobility services. 
2 when available. 

 271 

In order to account for taste heterogeneity in mode choice between individuals, we choose a 272 

mixed logit model in panel specification7 and include random alternative-specific constants 273 

(Hensher and Greene, 2003; McFadden and Train, 2000). We built and estimated the model 274 

                                                           
7 The repeated choice nature of panel data is recognized by Apollo and probabilities across individual choice 

observations for each individual are multiplied (Hess and Palma, 2019). 
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iteratively (i.e., dropping insignificant and insubstantial variables) to obtain the most 275 

parsimonious model possible that simultaneously allows for cross-modal comparisons. Note 276 

that the final model includes four non-linear variables: a squared term for trip distance and 277 

interaction terms between trip distance and precipitation, elevation and wind speed. For model 278 

estimation, we used maximum likelihood with 500 MLHS8 draws in the R package Apollo 279 

(Hess and Palma, 2019). Appendix 1 shows the utility functions. 280 

Finally, we set the availabilities. For each person, we verify if each transport mode was 281 

used at least once during the three months. If not, we set the availability of the respective 282 

transport mode to zero for all trips of that person, i.e. remove it from the choice set for this 283 

person. Further, we set the availability of shared e-scooters, shared e-bikes and public transport 284 

to zero for each trip where no vehicle was detected within a 500m radius or no public transport 285 

connection was found. 286 

 287 

4.2. Results 288 

Table 3 displays the estimation results. The mixed logit model has an excellent fit with an 289 

adjusted rho-square value of 0.44. In comparison to the reference mode (walking), trip distance 290 

substantially and significantly influences mode choice for all other modes. Precipitation 291 

positively influences mode choice for public transport and cars, and negatively for all micro-292 

mobility modes, most so for shared e-bikes and e-scooters. Elevation and wind speed further 293 

negatively influence mode choice for non-electric bikes. 294 

One perhaps surprising result concerns the penalty of the access distance for public 295 

transport and shared e-bikes and e-scooters. Access distance for shared e-scooters is penalized 296 

substantially more (-6.16) than access distance for public transport and shared e-bikes (-2.31 297 

                                                           
8 MLHS draws avoid undesirable correlation patterns that arise when standard Halton sequences are used for 

several variables (Hess et al., 2006). 
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and -2.36, respectively)9. Users of shared e-scooters are willing to walk an average of 60m and 298 

a maximum of 210m to access a vehicle, while users of shared e-bikes are willing to walk an 299 

average of 200m and up to 490m to access a vehicle. Public transport users are willing to walk 300 

even longer (average: 400m) to reach their preferred stop. We offer two explanations for this 301 

behaviour. First, shared e-scooters are used for substantially shorter distances than both other 302 

modes. Hence, a 200m access distance relative to the overall trip distance is substantially more 303 

for shared e-scooters and thus presents a greater relative burden. Second, shared e-scooters 304 

cannot be pre-reserved in Zurich. The longer the access distance, the more uncertainty in 305 

availability users face. For public transport real-time information about vehicle locations is 306 

available through major trip planning apps (e.g., Google Maps or the city’s public transport 307 

app) and Zurich’s shared e-bikes can be pre-reserved for up to ten minutes. 308 

Several further parameter estimates show the expected results and are thus only briefly 309 

mentioned here. For public transport, season tickets positively influence mode choice while 310 

transfers negatively influence mode choice. The transport bundle further positively influences 311 

mode choice for shared e-scooters. Vehicles ownership positively influences mode choice for 312 

each respective mode. Time of day is significant at a 95% confidence level only for personal e-313 

bikes and shared e-scooters, positively influencing mode choice during the morning commute 314 

(6am – 9am) for personal e-bikes and mode choice during the night (9pm – 5am) for shared e-315 

scooters. Most socio-demographic parameter estimates are insignificant at a 95% confidence 316 

level, except for full-time employment, which positively influences mode choice for shared e-317 

bikes.318 

                                                           
9 Additional saturation effects of the density of shared micro-mobility fleets were not found. 
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 319 

Table 3 Estimation results (mixed logit model). 

 PT Car Bike 
E-Bike 

(personal) 

E-Bike  

(shared) 

E-Scooter 

(personal) 

E-Scooter  

(shared) 

 Coef. t.rat. Coef. t.rat. Coef. t.rat. Coef. t.rat. Coef. t.rat. Coef. t.rat. Coef. t.rat. 

ASC (μ) -3.97 -58.57 -5.40 -43.34 -3.47 -44.60 -4.73 -25.39 -5.52 -7.97 -4.85 -13.34 -4.35 -7.88 

ASC (σ) -1.16 -45.41 -1.56 -42.84 -1.64 -41.59 -1.47 -17.00 -1.53 -8.29 1.51 11.16 0.36 2.08 

Distance 2.09 106.27 1.94 72.79 1.63 67.15 1.74 43.67 2.26 17.51 1.62 9.68 1.32 11.38 

Distance * Distance -0.04 -46.93 -0.03 -40.96 -0.03 -24.70 -0.03 -13.59 -0.09 -5.84 -0.07 -2.85 -0.02 -1.65 

Distance * Precipitation 0.75 4.21 0.74 4.09 -0.74 -3.96 -0.79 -2.86 -4.13 -3.00 -0.58 -0.84 -4.27 -1.64 

Distance * Elevation     -0.15 -3.59         

Distance * Wind speed     -0.61 -4.73         

Access distance -2.31 -35.46       -2.36 -1.95   -6.16 -2.89 

PT transfer -0.64 -29.23             

Morning (6am – 9am)       0.34 4.43 -0.18 -0.72 0.59 2.26 0.23 0.83 

Night (9pm – 5am)       -0.15 -1.32 -0.31 -1.09 0.91 3.57 0.35 1.23 

Vehicles in household   1.13 23.62 0.18 8.37 1.53 20.83   4.99 11.75   

PT season ticket (local) 0.93 14.13             

PT season ticket (nation) 0.91 7.65             

PT season ticket (bundle) 0.31 4.45       -0.32 -1.12   1.80 7.92 

Age         0.02 0.55   -0.01 -0.65 

Female         0.55 0.65   -0.74 -1.70 

University education         0.05 0.05   -0.18 -0.50 

Full-time employment         1.49 2.61   0.51 1.53 

Number of individuals 540              

Number of observations 65 716              

Adj. Rho-square 0.44              
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5. Substitution patterns and environmental implications 320 

In this section, we first utilize the estimated choice model to derive substitution patterns10 for 321 

each micro-mobility mode. Using these substitution patterns, we then calculate net CO2 322 

emissions. 323 

 324 

5.1. Substitution patterns 325 

Methodologically, only a slight adaption to the above choice model is necessary to derive 326 

substitution patterns. We take the subsets of trips conducted with e-scooters and e-bikes and set 327 

the availability for each mode, when chosen, from one to zero. We then apply our model to the 328 

subset of trips with adjusted availabilities to predict alternative mode choice. Conceptually, this 329 

predicted alternative mode is equal to what is commonly described as a substituted mode, i.e. 330 

the mode that would have been chosen if the chosen mode had not been available. Using the 331 

new predictions, we can calculate average substitution rates for e-scooters and e-bikes on a trip-332 

level and on a km-level. For the trip-level, we divide the number of trips with a particular 333 

substituted mode (e.g., public transport) by the total number of trips conducted with the micro-334 

mobility mode (e.g., shared e-scooters). For the km-level, we divide the total distance with a 335 

particular substituted mode by the total distance with the micro-mobility mode. 336 

The resulting substitution patterns are shown in Table 4. We observe that personal e-337 

bikes replace trips conducted with all four main modes (walk, PT, car, bike), while shared e-338 

bikes replace substantially fewer car trips and more PT and bike trips. While personal e-scooters 339 

                                                           
10 Substitution patterns (or ‘substitution rates’) can also be elicited with surveys, i.e. by asking participants about 

their last trip and their alternative mode choice. Indeed, this approach is much more common than the choice model 

approach developed here. The latter, however, has one key advantage over the former: it allows to calculate precise, 

distance-based substitution patterns. These are more adequate for estimating environmental implications than trip-

based substitution patterns stemming from surveys for three reasons. First, it is substituted distance and not 

substituted trips that matters when calculating environmental implications. Second, substitution patterns derived 

from choice models are valid for all trips, not just the ones explicitly asked for, as they build on user preferences. 

Third, substitution patterns derived from choice models are more reliable than those derived from stated preference 

surveys, which are prone to biases such as the recall bias or the social desirability bias. Hence, we chose to proceed 

with the choice model approach instead of detailing the results from survey data, which we also elicited. 
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show a similar substitution pattern to personal e-bikes with the exception of replacing more 340 

walk and fewer car trips, shared e-scooters predominantly replace walk and PT trips. In general, 341 

the trip-level substitution rates exhibit a higher share of walking trips than the km-level 342 

substitution rates. The reason is that walking trips are comparatively short, thus have less impact 343 

in distance-based measures. 344 

 345 

Table 4 Micro-mobility substitution rates (trip-level and km-level) derived from the mode choice 

model. 

 E-Bike (personal) E-Bike (shared) E-Scooter (personal E-Scooter (shared) 

Mode trip km trip km trip km trip km 

Walk 26% 9% 25% 10% 35% 19% 52% 26% 

PT 21% 31% 32% 50% 23% 28% 24% 48% 

Car 32% 43% 6% 8% 21% 29% 10% 12% 

Bike 21% 17% 37% 33% 22% 24% 11% 11% 

E-Bike (personal)   0% 0% 0% 0% 0% 0% 

E-Bike (shared) 0% 0%   0% 0% 3% 3% 

E-Scooter (personal) 0% 0% 0% 0%   0% 0% 

E-Scooter (shared) 0% 0% 0% 0% 0% 0%   

 346 

One of the many advantages of this choice model-based approach to deriving substitution 347 

patterns is that precise distance measures for each trip are observed. For surveys, these are 348 

usually imprecise or simply not available as they are based on participants’ memories of recent 349 

trips. Figure 2 displays substitution rates by distance brackets. Two general patterns emerge. 350 

For short trips, all micro-mobility modes mostly replace walking. As the distance grows, the 351 

shares of replaced public transport, bike and car trips increase. Personal e-bikes, however, 352 

replace personal cars substantially more often for longer distances than all other modes.  353 



 
20 

 

Figure 2 Substitution rates for micro-mobility modes by distance. 354 
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 371 

5.2. Environmental implications 372 

The impact of a new transport mode on the sustainability of the surrounding transport system 373 

depends not only on the replaced modes, but also on their respective emissions. In this 374 

subsection, we integrate our findings on substitution patterns with previous findings on gross 375 

CO2 emissions to calculate the net CO2 emissions of the different micro-mobility modes. 376 

Building on previous work from de Bortoli and Christoforou (2020) and Hollingsworth 377 

et al. (2019), the International Transport Forum (ITF, 2020) recently conducted a 378 
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comprehensive analysis of the life cycle emissions of emerging and more established transport 379 

modes. It took into account not only established components of such analyses (e.g., 380 

infrastructure wear, vehicle manufacturing, and fuel), but also developed a new component 381 

(operational services, e.g. rebalancing) which is a key differentiating characteristic and an 382 

emission driver of emerging modes such as shared micro-mobility services. Figure 3 shows the 383 

emissions in g CO2 per passenger kilometre (pkm) for all modes relevant to this study. 384 

 385 

Figure 3 Life cycle CO2 emissions per passenger kilometre of selected transport modes 386 

(adapted from ITF, 2020). 387 

 388 

 389 

 390 

 391 

 392 

 393 
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 395 

 396 

 397 

We integrate these findings on CO2 emissions with our findings on substitution patterns for 398 

shared and personal e-bikes and e-scooters to calculate their ‘net emissions’: 399 

 400 

𝑛𝑒𝑡 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 (𝑚𝑜𝑑𝑒) = 𝑔𝑟𝑜𝑠𝑠 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 (𝑚𝑜𝑑𝑒) −

∑ 𝑔𝑟𝑜𝑠𝑠 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 (𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑑 𝑚𝑜𝑑𝑒𝑖)
𝑖

(1)
 401 

 402 
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Consider the following (hypothetical) example: a shared e-scooter (106g CO2 / pkm) replaces 403 

public transport (72g CO2 / pkm) and walking (0g CO2 / pkm) in equal amounts (i.e., 50% and 404 

50%). The ‘gross emissions’ of shared e-scooters are 106g CO2 / pkm. The gross emissions of 405 

the replaced modes are 36g CO2 / pkm (calculate: 50% * 72g CO2 / pkm + 50% * 0g CO2 / 406 

pkm). The resulting net emissions of shared e-scooters are thus 70g CO2 / pkm. Positive net 407 

emissions can be interpreted as the additional emissions caused per pkm by the new mode. In 408 

turn, negative net emissions can be interpreted as the emissions saved per pkm by the new 409 

mode. 410 

Table 5 shows the resulting net emissions using the previously derived km-level 411 

substitution rates for all four micro-mobility modes. Note that only km-level substitution rates 412 

(i.e., not trip-level substitution rates) can be used for this type of analysis as trip-level 413 

substitution rates are biased towards short walk trips (see comparison in Table 4). We find that 414 

the CO2 emissions of personal e-bikes (34g CO2 / pkm) and personal e-scooters (42g CO2 / 415 

pkm) are lower than the average CO2 emissions of the modes they replace (82g CO2 / pkm and 416 

69g CO2 / pkm, respectively). Shared e-bikes and shared e-scooters exhibit the opposite pattern: 417 

their CO2 emissions are higher than the average CO2 emissions of the modes they replace. 418 

Hence, from a short-term mode choice perspective and under current conditions, only personal 419 

e-bikes and e-scooters contribute to making transport more sustainable, while shared e-bikes 420 

and e-scooters actually emit more CO2 than the transport modes they replace. All values can be 421 

regarded as lower limits as a certain share of trips can be assumed to be induced (i.e., not 422 

replacing previous trips), further adding to CO2 emissions.  423 
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Table 5 Average micro-mobility net emissions after substitution effects. 

Substituted mode 
Gross 

emissions 
Substitution patterns (km-level) by micro-mobility mode 

  
[g CO2 / pkm] 

E-Bike 

(personal) 

E-Bike 

(shared) 

E-Scooter 

(personal) 

E-Scooter 

(shared) 

Walk     0† 8% 8% 18% 20% 

PT (avg.)   72† 32% 34% 24% 37% 

Car (avg.) 135† 41% 21% 35% 21% 

Bike   17† 18% 23% 22% 14% 

E-Bike (personal)   34†  11% 1% 5% 

E-Bike (shared)   83† 0%  0% 3% 

E-Scooter (personal)   42† 1% 2%  1% 

E-Scooter (shared) 106† 0% 1% 0%   

Emissions of substituted modes 82 62 69 62 

Emissions of micro-mobility mode   34†   83†   42† 106† 

Net emissions [g CO2 / pkm] -48 21 -27 44 
† Emission calculations drawn from ITF (2020). 

 424 

Finally, we know that substitution patterns vary with trip distance (cf. Figure 3). Hence, net 425 

emissions will differ by distance bracket. Figure 4 visualizes this relationship. We find that net 426 

emissions for personal e-bikes and e-scooters are positive for short distances as they 427 

predominantly replace walking for short trips. For longer distances, they replace cars and public 428 

transport substantially more often, resulting in overall negative net emissions. Net emissions of 429 

shared e-bikes and e-scooters are positive regardless of the distance bracket and highest for 430 

short distances.  431 
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Figure 4 Replaced modes (stacked bars) and resulting per-kilometre net emissions (dots/line) 432 

for micro-mobility modes by distance. 433 
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 449 

6. Contributions and conclusions 450 

This is the first study to collect revealed preference data for and to estimate a comprehensive 451 

mode choice model between several shared and personal micro-mobility modes (e-bikes, e-452 

scooters) and more established transport modes (public transport, car, bike, walk). Our 453 

contributions to research, policy and practice are threefold. 454 

First, our results build the foundation to incorporate micro-mobility into transport 455 

network simulations to understand and to forecast their impact at system level and under 456 
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varying policy scenarios. All else equal, the choice model reveals that trip distance, 457 

precipitation and access distance are fundamental to shared micro-mobility mode choice. Users 458 

are willing to walk between ~60m and ~200m to access shared e-scooters and shared e-bikes, 459 

respectively. Pre-booking functionality decreases the disutility of larger access distances. These 460 

results are not only useful to researchers and practitioners aiming to extend transport network 461 

simulations, but can also inform service provider’s decisions on how to optimize their vehicle 462 

repositioning schemes. 463 

Second, we demonstrate how choice models can be used to derive distance-based 464 

substitution patterns. Distance-based substitution patterns are more adequate for estimating 465 

environmental implications than common trip-based substitution patterns that are elicited 466 

through surveys for several reasons. First, it is substituted distance and not substituted trips that 467 

matters when calculating environmental implications. Second, substitution patterns derived 468 

from choice models are valid for all trips, not just the ones explicitly asked for, as they build on 469 

user preferences. Third, substitution patterns derived from choice models are more reliable than 470 

those derived from stated preference surveys, which are prone to biases such as the recall bias 471 

or the social desirability bias. This methodological contribution will gain in relevance as further 472 

new mobility services are introduced and their environmental implications will need to be 473 

assessed. 474 

Third, our results yield direct policy implications for cities aiming to reduce transport-475 

related CO2 emissions. We show that personal e-bikes and e-scooters emit less CO2 than the 476 

transport modes they replace, while shared e-bikes and e-scooters emit more CO2 than the 477 

transport modes they replace. This finding challenges a common vision in transport that 478 

‘sharing is caring’ for the environment. For micro-mobility, the relationship indeed appears to 479 

be reverse. One the one hand, city administrations can use these insights to justify public 480 

subsidies for personal e-bike / e-scooter sales and investments in bike lanes to increase their 481 
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mode share further. On the other hand, our results suggest caution when admitting and licensing 482 

shared micro-mobility providers. City administrations can collaborate with and require 483 

providers to improve the two main sources of CO2 emissions of shared micro-mobility 484 

(operational services and vehicle manufacturing) while safeguarding their potential to improve 485 

transit catchment areas and to ease peak-time transit occupancy (e.g., Bielinski et al., 2021; de 486 

Bortoli and Christoforou, 2020; ITF, 2020). While shared e-bikes and e-scooters might increase 487 

CO2 emissions in the short-term, they could help spark sustainable mobility transitions in the 488 

long-term if usage leads to ownership. Clearly, longitudinal studies are needed to establish this 489 

relationship. 490 

Finally, we acknowledge that this study has limitations. Although COVID-19 incidence 491 

rates were comparatively low in Switzerland during the time of study11, travel behaviour was 492 

still affected. Most of all, public transport usage remained lower than usual (Molloy et al., 493 

2021). Our study thus potentially over-estimates public transport substitution by other modes.  494 

                                                           
11 The 7-day incidence rate per 100,000 inhabitants ranged between 1.4 on 1 June and 27.0 on 1 October. In 

comparison, the highest rate was reported on 11 November (666.3). 
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Appendix 1 637 

We specify the utility functions for the mixed logit model using the abbreviations as follows: 638 

 639 

Modes    Attributes 640 

WA  Walk   DI Trip distance  PTL PT season ticket (local) 641 

PT   Public transport AD Access distance PTC PT season ticket (nation) 642 

CA Car   TR Transfers  PTB PT season ticket (bundle) 643 

BI Bike   EL Elevation  HHC Cars in household 644 

PEB Private e-bike  MO Morning  HHB Bikes in household 645 

SEB Shared e-bike   NI Night   HHE E-bikes in household 646 

PES Private e-scooter PR Precipitation  HHS E-scooters in household 647 

SES Shared e-scooter WI Wind   UE University education 648 

        FE Full-time employment 649 

        AG Age 650 

        FE Female 651 

   652 

Utility functions 653 

𝑈𝑊𝐴 = 𝐴𝑆𝐶𝑊𝐴  654 

𝑈𝑃𝑇 = 𝐴𝑆𝐶𝑃𝑇 + 𝛽𝑃𝑇𝐷𝐼
∗ 𝐷𝐼 + 𝛽𝑃𝑇𝐷𝐼2

∗ 𝐷𝐼2 + 𝛽𝑃𝑇𝑃𝑅𝐷𝐼
∗ 𝑃𝑅 ∗ 𝐷𝐼 + 𝛽𝑃𝑇𝐴𝐷

∗ 𝐴𝐷 + 𝛽𝑃𝑇𝑇𝑅
∗655 

𝑇𝑅 + 𝛽𝑃𝑇𝑃𝑇𝐵
∗ 𝑃𝑇𝐵 + 𝛽𝑃𝑇𝑃𝑇𝐿

∗ 𝑃𝑇𝐿 + 𝛽𝑃𝑇𝑃𝑇𝐶
∗ 𝑃𝑇𝐶  656 

𝑈𝐶𝐴 = 𝐴𝑆𝐶𝐶𝐴 + 𝛽𝐶𝐴𝐷𝐼
∗ 𝐷𝐼 + 𝛽𝐶𝐴𝐷𝐼2

∗ 𝐷𝐼2 + 𝛽𝐶𝐴𝑃𝑅𝐷𝐼
∗ 𝑃𝑅 ∗ 𝐷𝐼 + 𝛽𝐶𝐴𝐻𝐻𝐶

∗ 𝐻𝐻𝐶  657 

𝑈𝐵𝐼 = 𝐴𝑆𝐶𝐵𝐼 + 𝛽𝐵𝐼𝐷𝐼
∗ 𝐷𝐼 + 𝛽𝐵𝐼𝐷𝐼2

∗ 𝐷𝐼2 + 𝛽𝐵𝐼𝑃𝑅𝐷𝐼
∗ 𝑃𝑅 ∗ 𝐷𝐼 + 𝛽𝐵𝐼𝐻𝐻𝐵

∗ 𝐻𝐻𝐵 + 𝛽𝐵𝐼𝑊𝐼
∗658 

𝑊𝐼 ∗ 𝐷𝐼 +  𝛽𝐵𝐼𝐸𝐿
∗ 𝐸𝐿 ∗ 𝐷𝐼  659 

𝑈𝑃𝐸𝐵 = 𝐴𝑆𝐶𝑃𝐸𝐵 + 𝛽𝑃𝐸𝐵𝐷𝐼
∗ 𝐷𝐼 + 𝛽𝑃𝐸𝐵𝐷𝐼2

∗ 𝐷𝐼2 + 𝛽𝑃𝐸𝐵𝑃𝑅𝐷𝐼
∗ 𝑃𝑅 ∗ 𝐷𝐼 + 𝛽𝑃𝐸𝐵𝐻𝐻𝐸

∗ 𝐻𝐻𝐸 +660 

𝛽𝑃𝐸𝐵𝑀𝑂
∗ 𝑀𝑂 + 𝛽𝑃𝐸𝐵𝑁𝐼

∗ 𝑁𝐼      661 
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𝑈𝑆𝐸𝐵 = 𝐴𝑆𝐶𝑆𝐸𝐵 + 𝛽𝑆𝐸𝐵𝐷𝐼
∗ 𝐷𝐼 + 𝛽𝑆𝐸𝐵𝐷𝐼2

∗ 𝐷𝐼2 + 𝛽𝑆𝐸𝐵𝑃𝑅𝐷𝐼
∗ 𝑃𝑅 ∗ 𝐷𝐼 + 𝛽𝑆𝐸𝐵𝑃𝑇𝐵

∗ 𝑃𝑇𝐵 +662 

𝛽𝑆𝐸𝐵𝐴𝐷
∗ 𝐴𝐷 + 𝛽𝑆𝐸𝐵𝑀𝑂

∗ 𝑀𝑂 + 𝛽𝑆𝐸𝐵𝑁𝐼
∗ 𝑁𝐼 + 𝛽𝑆𝐸𝐵𝐴𝐺

∗ 𝐴𝐺 + 𝛽𝑆𝐸𝐵𝐹𝐸
∗ 𝐹𝐸 + 𝛽𝑆𝐸𝐵𝑈𝐸

∗663 

𝑈𝐸 + 𝛽𝑆𝐸𝐵𝐹𝑇
∗ 𝐹𝑇      664 

𝑈𝑃𝐸𝑆 = 𝐴𝑆𝐶𝑃𝐸𝑆 + 𝛽𝑃𝐸𝑆𝐷𝐼
∗ 𝐷𝐼 + 𝛽𝑃𝐸𝑆𝐷𝐼2

∗ 𝐷𝐼2 + 𝛽𝑃𝐸𝑆𝑃𝑅𝐷𝐼
∗ 𝑃𝑅 ∗ 𝐷𝐼 + 𝛽𝑃𝐸𝑆𝐻𝐻𝑆

∗ 𝐻𝐻𝑆 +665 

𝛽𝑃𝐸𝑆𝑀𝑂
∗ 𝑀𝑂 + 𝛽𝑃𝐸𝑆𝑁𝐼

∗ 𝑁𝐼      666 

𝑈𝑆𝐸𝑆 = 𝐴𝑆𝐶𝑆𝐸𝑆 + 𝛽𝑆𝐸𝑆𝐷𝐼
∗ 𝐷𝐼 + 𝛽𝑆𝐸𝑆𝐷𝐼2

∗ 𝐷𝐼2 + 𝛽𝑆𝐸𝑆𝑃𝑅𝐷𝐼
∗ 𝑃𝑅 ∗ 𝐷𝐼 + 𝛽𝑆𝐸𝑆𝑃𝑇𝐵

∗ 𝑃𝑇𝐵 +667 

𝛽𝑆𝐸𝑆𝐴𝐷
∗ 𝐴𝐷 + 𝛽𝑆𝐸𝑆𝑀𝑂

∗ 𝑀𝑂 + 𝛽𝑆𝐸𝑆𝑁𝐼
∗ 𝑁𝐼 + 𝛽𝑆𝐸𝑆𝐴𝐺

∗ 𝐴𝐺 + 𝛽𝑆𝐸𝑆𝐹𝐸
∗ 𝐹𝐸 + 𝛽𝑆𝐸𝑆𝑈𝐸

∗668 

𝑈𝐸 + 𝛽𝑆𝐸𝑆𝐹𝑇
∗ 𝐹𝑇      669 

 670 

Note that all alternative specific constants are random to account for taste heterogeneity in 671 

mode choice between individuals. 672 


