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Introduction to 
macroscopic urban models



Transportation models

Open simulation plateform (Symuvia)

4

Local traffic dynamics

(Leclercq et al, 2009-2015)

Static model for planing

Room for large-scale dynamic models



Large-scale dynamic urban simulation (1)
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Large-scale dynamic urban simulation (2)

Trips



MFD definition

Flow / Travel Production

Density

FD (local level)

Signals

MFD (network level)

Density or accumulation

FD + Network structure (topology / signal timings) + Route choices = MFD



Multimodal MFD extension



New insights on multimodal MFD from 
the pNEUMA experiment

Paipuri, M., Barmpounakis, E., Geroliminis, N., Leclercq, L., 2021. Empirical Observations of Multi-modal Network-level Models: Insights from 
the pNEUMA Experiment. Transportation Research part C.
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Figure 1: Athens network: map of the area and its link level description. (a) Map of Athens, Greece ©OpenStreetMap 2020. (b) Link level representation of

Athens. Links in blue are present inside the considered area.
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Figure 2: 2D MFDs of considered region. (a) Production MFD. (b) Mean speed MFD.

namely October 19, 2018, October 24, 2018, October 29, 2018, October 30, 2018 and November 1, 2018. In the present work,

only data from the last four days of the experiment is used. On the first day, the morning peak hour from 08:30 AM to 11:00

AM was monitored, whereas on the remaining three days, the traffic stream from 08:00 AM to 10:30 AM was monitored.

The video recordings were processed to extract the individual trajectories of each vehicle along with its mode. In the current90

dataset, six different modes are identified: private cars, taxis, buses, medium vehicles, heavy vehicles, and PTWs. Although

the raw data has a higher sampling frequency of 0.04 s, for the current study, it is eventually downgraded to 1 s in order to

ease the data processing. More details about the experimental setup can be found in Barmpounakis and Geroliminis (2020)

and hence, they are omitted here.

Since the drones have a limited battery life, the recordings were intermittent. Drones were brought back to change the95

batteries and thus, 12 min to 15 min of recording was lost inside each 30 min period. Hence, for every 30 min period the

active recording time is only around 15 min to 17 min. It is noticed that not all drones were recording either at the beginning

or towards the end of active recording periods due to synchronization issues. Only data corresponding to complete drone

coverage is considered to minimize the bias in estimating macroscopic variables in the current work. According to the

4

Experimental setting

https://open-traffic.epfl.ch/



Ideal for multimodal research

Cars Taxis Buses PTWs Medium and
Heavy Vehicles

at a glance

Barbounakis and Geroliminis, 2020, part-C
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Figure 2: 2D MFDs of considered region. (a) Production MFD. (b) Mean speed MFD.

namely October 19, 2018, October 24, 2018, October 29, 2018, October 30, 2018 and November 1, 2018. In the present work,

only data from the last four days of the experiment is used. On the first day, the morning peak hour from 08:30 AM to 11:00

AM was monitored, whereas on the remaining three days, the traffic stream from 08:00 AM to 10:30 AM was monitored.

The video recordings were processed to extract the individual trajectories of each vehicle along with its mode. In the current90

dataset, six different modes are identified: private cars, taxis, buses, medium vehicles, heavy vehicles, and PTWs. Although

the raw data has a higher sampling frequency of 0.04 s, for the current study, it is eventually downgraded to 1 s in order to

ease the data processing. More details about the experimental setup can be found in Barmpounakis and Geroliminis (2020)

and hence, they are omitted here.

Since the drones have a limited battery life, the recordings were intermittent. Drones were brought back to change the95

batteries and thus, 12 min to 15 min of recording was lost inside each 30 min period. Hence, for every 30 min period the

active recording time is only around 15 min to 17 min. It is noticed that not all drones were recording either at the beginning

or towards the end of active recording periods due to synchronization issues. Only data corresponding to complete drone

coverage is considered to minimize the bias in estimating macroscopic variables in the current work. According to the
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2D MFD
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Figure 3: Partial mean speed (v j) and mean running speed (vr, j) MFDs for mode j. (a) Car. (b) Taxi. (c) Bus. (d) Medium Vehicle (MV). (e) Heavy Vehicle

(HV). (f) PTW.

the current analysis due to the sample size. Appendix A shows the comparison between the mean speed and mean running

speed of each mode is compared to that of cars to deduce the network’s traffic characteristics.

In the previous works that estimated the bi-modal MFDs (Geroliminis et al., 2014; Loder et al., 2017), mean speed175

of entire network is expressed as a function of accumulations of private cars and public transport vehicles. However, it was

shown in Paipuri and Leclercq (2020) that segregating mean speed of each mode is essential for accurate traffic state estimation

in the MFD-based models. Thus, in the current work mean speed of each mode is assumed to be a function of accumulation

of all modes in the network. Although very detailed data is available in the present case, the coverage in terms of traffic

states remains limited. Hence, a linear functional form (Ampountolas et al., 2017; Loder et al., 2017) is chosen and mean180

speed of each mode is expressed as linear combination of all mode in the current work. If the data across the wider ranges

of accumulation is available, it is necessary to consider a piece-wise linear functional form to approximate the mean speed

accurately. The linear functional form assumed in the present work can be expressed as follow,

v j = v f , j +ac, j nc +at, j nt +ab, j nb +am, j nm +ap, j np, 8 j = {c, t,b,m, p}, (2)

where v j is mean speed of mode j, v f , j is free-flow speed of mode j. The regression coefficient ak, j represents the marginal

negative effect of mode k on the mean speed of mode j. Thus, this functional form has a clear physical meaning and it is185

possible to quantify the relative importance of all modes on the mean speed of each mode. Besides, uni-modal approach is

also considered where the mean speed of a given mode is assumed to depend on that mode only, i.e., regression coefficients

7

Unimodal speed regression
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Multimodal speed regression
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Figure 4: Coefficients of linear regression fits for mean speed using NNLS for each mode. Free flow speed v f , j is in ms�1. (a) Car. (b) Taxi. (c) Bus. (d)

Medium Vehicle (MV). (e) PTW.
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Table 1: Statistical p-values, mean speed in ms�1, R
2 and RMSRE values of uni- and multi-modal mean speed fits for all modes using NNLS method.

Mode

p-values v f , j R
2 RMSRE

Uni- Multi-
Uni- Multi- Uni- Multi- Uni- Multi-

nm nc nt nb nm np

Car 0.01 0.01 0 0 0.60 0 4.06 4.06 0.01 0.75 0.125 0.065

Taxi 0 0.80 0 0 0.72 0 4.05 4.05 0.60 0.68 0.071 0.063

Bus 0 0.14 0 0 0.06 0.48 2.79 2.79 0.15 0.30 0.123 0.112

MV 0 0.01 0 0 0.12 0.07 3.66 3.66 0.19 0.43 0.114 0.098

PTW 0 0 0.06 0 0.63 0 4.90 4.90 0.04 0.78 0.074 0.071

of cars, taxis and medium vehicles. This is again due to the filtering behavior of the PTWs, which negatively impact the speeds

of other modes. It is also inferred that the mean speed of PTWs is majorly impacted by other PTWs in the network, as they

can form platoons to move faster compared to other vehicles.

To show the importance of a multi-modal approach, the RMSRE errors of the multi-modal mean speed fits are compared

with the uni-modal ones estimated using eqs. (2) and (3). Table 1 presents the R
2 and RMSRE for uni- and multi-modal mean225

speed fits using NNLS technique. Firstly, it can be noticed that there is an improvement in both R
2 and RMSRE values going

from uni-modal to multi-modal approach. Notably, in the case of cars, there is a significant improvement in R
2 and RMSRE

values using multi-modal fit, where the error is almost halved compared to the uni-modal one. Following, taxis and medium

vehicles show a 10% – 15% decrease in the RMSRE when the multi-modal functional form is assumed. It is observed that

the buses and PTWs show minor improvement with the current dataset. However, R
2 value of the buses doubled in the case230

of multi-modal fit, although the improvement in RMSRE is marginal. In the case of PTWs, it is clear from Fig. 4(e) that the

other PTWs majorly influence their mean speed as they tend to form platoons and the interactions from other modes is rather

minimal. Thus, there is no significant improvement resorting from the uni-modal to multi-modal approach for PTWs. Finally,

it can be concluded that the multi-modal approach gives better mean speed estimation compared to the uni-modal one, even

though the improvement is not very significant for some modes.235

Finally, it can be concluded that multi-modal mean speed MFD describes the variation of mean speed over the uni-modal

counterpart, where the improvement is quite pronounced for some modes. However, it is worth noting that data coverage is

the main limitation of the current analysis. Nevertheless, the current regression analysis gives satisfactory results. However,

there is room for improvement in predicting the mean speed of some modes, mainly buses and medium vehicles. Thus, in

the following section, another functional form using stopped fractions instead of accumulations as explanatory variables is240

investigated.

4. A Multi-modal Two-fluid Model

4.1. Background

A functional form between mean speed and accumulations is not only way to characterize the traffic behaviour at network-

level and there are other expressions that have been proposed in the literature. In particular, the two-fluid theory proposed245

by Herman and Prigogine (1979) for the town traffic is based on the kinetic theory of multi-lane highway traffic (Prigogine

10
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The multimodal two-fluid model

and Herman, 1971). The traffic in a city network can be assumed to have two parts: running vehicles and stopped vehicles

due to congestion, traffic signals, stop signs, etc., but not parked vehicles. Two parameters characterize the two-fluid model,

namely minimum travel time
✓

1
v f ,r

◆
and an indicator of the quality of traffic in the network (ň). The model is based on two

assumptions:250

1. The mean running speed (vr) of vehicles in the network is proportional to the fraction of vehicles ( fr) that are moving.

2. The fraction of the time stopped of a given vehicle is equal to the average fraction of the homogeneous population of

vehicles ( fs) over the same period. It is clear that fr + fs = 1.

The first assumption can be expressed mathematically as follows,

vr = v f ,r ( fr)
ň ⌘ v f ,r (1� fs)

ň, (5)

where v f ,r is the free-flow running speed. As the mean speed can be defined as v = vr fr, eq. (5) can be re-written as,255

v = v f ,r ( fr)
ň+1 ⌘ v f ,r (1� fs)

ň+1. (6)

The essential difference compared to the regression analysis presented in Section 3 is that the explanatory variable for the

mean speed is no longer the vehicle accumulations but the fraction of stopped (or running vehicles). However, this variable is

difficult to monitor in reality and thus, it is necessary to estimate this fraction from other variables that are easier to measure

in the field, i.e., the accumulations.

The second assumption leads to the following expression,260

fs =
Ts

T
, (7)

where Ts is the mean stopped time per unit distance and T is the trip time per unit distance. Substituting eq. (7) in eq. (6) and

using relations v =
1
T

, Tf =
1

v f ,r
and T = Tf +Ts, the following expressions can be deduced:

Tr = T

1
ň+1

f
T

ň

ň+1 and Ts = T �T

1
ň+1

f
T

ň

ň+1 . (8)

It is to be noted that the variables in the two-fluid model are always meant to be mean values taken over the entire network.

Eq. (8) represents conventional two-fluid model. A higher value of ň for a given value of Tf leads to lower mean running

speeds and thus, more congested traffic. Several field studies showed that the value of ň varies between 0.8 to 3, where smaller265

ň indicates better operating conditions for traffic flow (Williams, 2001).

As a first step, the two-fluid model is applied to the current dataset per mode to investigate if the assumptions of the

two-fluid model hold on the modal data. This is referred to as uni-modal two-fluid regression. Simultaneously, the classical

two-fluid model is also calibrated by treating all modes alike to estimate the two-fluid parameters for the entire network under

consideration. The so-called uni-modal and classical two-fluid regressions are then compared to investigate if segregating the270

modes can improve the estimation of model parameters.

4.2. Multi-modal two-fluid model

Most of the works based on the two-fluid model were proposed at the network level without considering the multi-

modality. Herman and Ardekani (1984) presented the results of a controlled experiment involving buses and cars in the

11

and Herman, 1971). The traffic in a city network can be assumed to have two parts: running vehicles and stopped vehicles

due to congestion, traffic signals, stop signs, etc., but not parked vehicles. Two parameters characterize the two-fluid model,

namely minimum travel time
✓

1
v f ,r

◆
and an indicator of the quality of traffic in the network (ň). The model is based on two
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The first assumption can be expressed mathematically as follows,

vr = v f ,r ( fr)
ň ⌘ v f ,r (1� fs)

ň, (5)

where v f ,r is the free-flow running speed. As the mean speed can be defined as v = vr fr, eq. (5) can be re-written as,255

v = v f ,r ( fr)
ň+1 ⌘ v f ,r (1� fs)

ň+1. (6)

The essential difference compared to the regression analysis presented in Section 3 is that the explanatory variable for the

mean speed is no longer the vehicle accumulations but the fraction of stopped (or running vehicles). However, this variable is

difficult to monitor in reality and thus, it is necessary to estimate this fraction from other variables that are easier to measure

in the field, i.e., the accumulations.

The second assumption leads to the following expression,260

fs =
Ts

T
, (7)

where Ts is the mean stopped time per unit distance and T is the trip time per unit distance. Substituting eq. (7) in eq. (6) and

using relations v =
1
T

, Tf =
1

v f ,r
and T = Tf +Ts, the following expressions can be deduced:

Tr = T

1
ň+1

f
T

ň

ň+1 and Ts = T �T

1
ň+1

f
T

ň

ň+1 . (8)

It is to be noted that the variables in the two-fluid model are always meant to be mean values taken over the entire network.

Eq. (8) represents conventional two-fluid model. A higher value of ň for a given value of Tf leads to lower mean running

speeds and thus, more congested traffic. Several field studies showed that the value of ň varies between 0.8 to 3, where smaller265

ň indicates better operating conditions for traffic flow (Williams, 2001).

As a first step, the two-fluid model is applied to the current dataset per mode to investigate if the assumptions of the

two-fluid model hold on the modal data. This is referred to as uni-modal two-fluid regression. Simultaneously, the classical

two-fluid model is also calibrated by treating all modes alike to estimate the two-fluid parameters for the entire network under

consideration. The so-called uni-modal and classical two-fluid regressions are then compared to investigate if segregating the270

modes can improve the estimation of model parameters.

4.2. Multi-modal two-fluid model

Most of the works based on the two-fluid model were proposed at the network level without considering the multi-

modality. Herman and Ardekani (1984) presented the results of a controlled experiment involving buses and cars in the

11

Running speed

Mean speed

Fraction of vehicles that are stopped during a given time internal, i.e.,
The mean stoped time / m over the mean travel time / m

(Herman and Prigogine, 1979)

context of the two-fluid model. It was reported that buses have a considerably higher value of ň compared to cars. The authors275

claimed that the differences in the two-fluid parameters result from additional acceleration-deceleration cycles of the buses

during the dwelling. However, they applied the two-fluid model to cars and buses independently and did not account for their

interactions. For instance, in eq. (6), it is a very crude approximation to assume that the mean speed of a given mode depends

only on the stopped fraction of vehicles of that mode itself, especially in multi-modal urban networks. At the same time, the

two-fluid model does not explain the scatter in the city traffic data presented in Ardekani (1984).280

The first assumption of the original two-fluid model is modified as: “The mean running speed (vr, j) of vehicles of mode

j is proportional to the fractional of vehicles of all modes that are moving”. This modified assumption is the basis of the

multi-modal two-fluid regression. Mathematically, it can be expressed as,

vr, j = v f ,r, j ’
k2M

�
1� fs,k

�
ňk, j , 8 j 2 M and M = {c, t,b,m, p}, (9)

where v f ,r, j is free-flow running speed of mode j, fs,k 8 j is the stopped fraction of vehicles and ňk, j is two-fluid parameter of

mode k. Consequently, using the relation v j = vr, j (1� fs, j), the mean speed of mode j can be expressed as,285

v j = v f ,r, j (1� fs, j) ’
k2M

�
1� fs,k

�
ňk, j , 8 j 2 M and M = {c, t,b,m, p}. (10)

When all the vehicles of all modes are moving, fs, j = 0 and therefore, the mean speed of that mode is equal to free-flow

running mean speed (v f ,r, j). Similarly, if all the vehicles are stopped, v j = 0 according to eq. (10). Hence, the assumption

in eq. (9) satisfies the boundary conditions. The multi-modal extension differs from the original model when fs, j is between

0 and 1. Consider a case when fs, j = 0, i.e., all the vehicles of mode j are moving, but there are stopped vehicles of other

modes, i.e., fs,k 8 k 6= j are non-zero. In that scenario, the mean speed of mode j will be lower than free-flow running speed290

and its magnitude depends on the stopped fraction ( fs,k) and the corresponding ňk, j of each mode. For a given number of total

vehicles, different combinations of stopped fractions between different modes give different mean speeds as per eq. (10). On

the other hand, the original two-fluid model depends only on the stopped fraction of all vehicles irrespective of the mode and

always yields the same mean speed. Hence, eq. (10) can explain the scatter in the data.

Now using the relations v j =
1
Tj

, v f ,r, j =
1

Tf ,r, j
and fs,k =

Ts, j

Tj

, stopped time per unit distance can be expressed in terms of295

trip time per unit distance as follows,

Ts, j = Tj �
T

1
ň j, j+1

f ,r, j T

ň j, j
ň j, j+1

j

’
k2M ,k 6= j

�
1� fs,k

� ň
k, j+1

ň j, j+1

, 8 j 2 M and M = {c, t,b,m, p}. (11)

Here Ts, j is a function of travel times of all modes and hence, interactions between different modes are taken into account.

Notice that the two-fluid parameter ňk, j quantifies the influence of stopped vehicles of mode k on the mean speed of mode j.

Like the previous study, empirical data is used to estimate the model parameters in eq. (10). The non-linear relation in eq. (10)

can be transformed into linear by using log-transformation and so, linear regression can be used on the resulting transformed300

equation.

As the trajectory data of each vehicle is available, it is possible to estimate the total number of vehicles and number of

stopped vehicles within each aggregation interval. Using generalized definitions of Edie (1963), total number of vehicles (n)
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Figure 5: Comparison of empirical data and model results between stopped time and total time per unit distance in the uni-modal two-fluid regression for all

modes considered. (a) Car. (b) Taxi. (c) Bus. (d) Medium Vehicle (MV). (e) PTW.

between trip time (Tj) and stop time (Ts, j) per unit distance. At the same time, both T
0
j

and T
0

s, j can be computed empirically

from the trajectory data. They can be expressed as follows,

T
0
j
=

n j

Pj

and T
0

s, j =
ns, j

Pj

, 8 j 2 {c, t,b,m, p}, (14)

where n j and ns, j are total and stopped accumulations, respectively and Pj is production of mode j.

Figure 5 presents empirical data of T
0
j

and T
0

s, j, estimated by eq. (14), and its corresponding model, using eq. (13) and330

fit parameters in Table 2. For the sake of comparison, the classical two-fluid model regression is also shown in all plots.

Firstly, it is evident that the scatter in the plots is considerably smaller than the ones shown in Fig. 3, where mean speed is

expressed as a function of modal accumulations. By considering the trip time as a surrogate to the mean speed, it can be

concluded that stopped time (or stopped fraction) is a better variable to characterize mean speed than accumulations per se

in the current dataset. At the same time, it can be observed that the empirical data and model are in good agreement for all335

the modes. Fig. 5(c) shows the uni-modal and classical approaches of buses yield skewed results compared to the empirical

data. This can be due to several factors like the characteristics of bus, presence of dedicated bus lanes in the bus route, bus

bunching, etc., which can increase travel time variability. On the other hand, cars and taxis have a very similar trend as overall

traffic behaviour. It can be noticed that the stop times of PTWs are very close to average stop times in the free-flow regime.

However, PTWs tend to have fewer stoppages than the network average due to their filtering behaviour in the congestion340

periods. Fig. 5(e) shows that the average stop time of PTWs is lower than the network average as the network gets congested.

Thus, it can be concluded that the original two-fluid model can be applied to each mode independently, which in turn helps
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Figure 7: Comparison of empirical data and model results between stopped time and total time per unit distance in the multi-modal two-fluid regression for

all modes considered. (a) Car. (b) Taxi. (c) Bus. (d) Medium Vehicle (MV). (e) PTW.
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Estimating fs - ergodicity assumption

mean speeds and it is necessary to validate the model with data that covers a broader range of mean speeds.

Finally, the results from the current model are compared with the ones of multi-modal mean speed analysis as a function370

of accumulations presented in Section 3. A significant reduction in the RMSRE values for all modes is noticed when the

mean speed is expressed in terms of stopped fractions compared to the accumulations. Similarly, there is also improvement

in the R
2 values, which signifies that the stopped fractions can explain the mean speed variability than the accumulations.

This improvement is significant for buses and medium vehicles. Therefore, the current work results conclude that the stopped

fraction of vehicles better explains the mean speed than the accumulations counterpart. However, it is worth noting that this375

conclusion is valid only in the current dataset for the network under investigation. More analysis on different networks that

cover wider time periods is necessary to arrive at a consensus.

This opens a new research question: how to estimate the stopped fraction of vehicles in the real networks? As in the

current case, if GPS traces of individual vehicles are available, the estimation of stopped fractions is trivial. However, the

current dataset comes from a unique experiment designed to record traffic observations and these kinds of data are one of their380

kind. In the absence of GPS data, other means of traffic observations, especially Loop Detector Data (LDD), are not relevant

in the current context to determine the stopped and trip times per distance travelled. Thus, it is necessary to resort to surrogate

models to estimate an approximate stopped fraction as a function of more common traffic variables like accumulations or

densities, which is discussed in Appendix B. The following study discusses the validity of ergodicity assumption and the

effect of penetration rates of GPS data on the estimation of stopped fractions.385

4.4. Investigation of Ergodicity assumption and vehicle penetration rates for a multi-modal two-fluid model.

GPS data can be used to estimate stopped fraction and they are more readily available lately from different types of sources

like mobile phones, GPS devices, etc. The main limitation of data from these types of sources is that they do not cover entire

traffic and hence, they are available at low to moderate penetration rates. Hence, it is vital to study the influence of penetration

rates on the estimation of stopped fractions in the real network. This analysis provides the influence of penetration rates on390

the estimation of stopped fractions using the present dataset.

In practical systems, it is often not possible to estimate time averages due to various limitations. The ergodic theory was

developed to address this shortcoming, proposing that the ensemble average can replace the time average. In the case of traffic,

the system is ergodic if the performance of a single test vehicle over a sufficiently long period of time is identical to the mean

performance of all the vehicles in the system over the same period (Herman and Ardekani, 1984). The assumption can be395

considered a strong ergodicity assumption (Chakraborty and Srinivasan, 2016) as it states that the ratio of stopped time to trip

time of any probe vehicle is equal to the average fraction of stopped vehicles during the same period and it is valid only in

steady-state conditions. This is unlikely to hold in reality due to variability in the driver’s behaviour, type and characteristics

of probe vehicle, etc. This can be relaxed by assuming that the stopped fraction can be determined by the average stopped and

trip distances of all probe vehicles within a given time period. This so-called weak ergodic assumption can be expressed as,400

f̂s =
T s

T
, (15)

where T s and T are mean stopped time and mean trip time of all probe vehicles in a given time period. Moreover, using

the mean travel times represent the population average better than the individual data. Ardekani (1984) studied the strong

ergodicity assumption by using aerial photographs and chase-car techniques of urban traffic corridors. It was concluded
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that the average stopped fraction can be approximated as an average of the fraction of stopped times of all probe vehicles.

Mathematically, it can be expressed as,405

f̃s =

⌧
Ts

T

�
. (16)

However, very few probe vehicles were used in the study. On the contrary, it is the first time that such a high resolution data

is available to provide a rigorous and accurate comparison of the ergodicity conjecture. Thus, the current dataset is used to

study the validity of the strong and weak ergodicity assumption using the ground truth presented in eq. (12). This section

presents the comparison of ground truth ( fs) with the strong ( f̃s) and weak ( f̂s) ergodicity assumptions for different levels of

penetration rates.410

As the current dataset is multi-modal, the stopped fraction of vehicles for each mode is estimated and comparison is made

for each mode independently. Different penetration rates (r) ranging from 0.05 to 0.95 with a step of 0.05 are considered.

For each penetration rate, trajectories are randomly sampled to build a set of probe trajectories. It is to be noted that random

sampling is done with all modes combined and thus, a constant penetration rate for each mode is not guaranteed. For each

penetration rate, both f̃s and f̂s are estimated for all aggregation intervals. This process is repeated 1000 times to minimize415

the biases in random sampling.

Figure 8 shows the evolution of RMSRE of stopped fractions computed using strong and weak ergodicity assumptions

for different penetration rates. It is clear from the plots that the error reduces rapidly for weak ergodicity assumption with

increasing penetration rate. On the other hand, the error remains almost constant for all modes for the stopped fraction

estimated by the strong ergodicity assumption. This error saturation is due to the bias introduced by the strong ergodicity420

assumption in the computation of stopped fraction. It is noticed that the strong ergodicity assumption under-predicts the

stopped fraction consistently for all modes at all ranges of the stopped fraction. This inference is in-line with the field

experiments reported in Herman and Ardekani (1984), where f̃s is slightly lower than ground truth. The error falls between

10–23% for stopped fraction computed by the strong ergodic condition. The penetration rate needed to estimate stopped

fraction using weak ergodicity with an RMSRE error of 0.1 is indicated in the plots. In cars, taxis, and PTWs, around 20%425

of penetration is enough to accurately estimate the stopped fraction. However, buses and medium vehicles need more than

50% penetration rates, which is unrealistic. This can be again due to fewer buses and medium vehicles than other modes in

the current data. In the case of buses, this limitation is less critical as bus trajectories can be obtained (even in real-time)

from public transit operators and thus, stopped fraction estimates can be extracted accurately. Thus, it can be concluded

that the ergodic assumption is valid in the case of the two-fluid model, albeit it should be applied weakly to estimate the430

stopped fraction accurately. Very good estimates of the stopped fraction can be obtained with lower penetration rates using the

weak ergodicity assumption. In the absence of GPS traces, it is not trivial to estimate stopped fractions using classical traffic

measurements like LDD.

5. A Dynamic Trip-based Model Based On Stopped Fraction of Vehicles

5.1. Model description435

Dynamic models to predict the evolution of accumulation with time have been developed and integrated in perimeter

control strategies based on flow conservation equations (Ramezani et al., 2015). However, it is concluded from the previous

analysis that integrating a multi-modal two-fluid model can have a better estimation of the running speed at a given time
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Figure 8: RMSRE of stopped fractions estimated by the strong
�

f̃s, j
�

and weak
�

f̂s, j
�

ergodic assumptions with respect to ground truth. The penetration rates

indicated in red correspond to an error of 0.1 in f̂s, j . (a) Car. (b) Taxi. (c) Bus. (d) Medium Vehicle (MV). (e) PTW.

interval, if the stopped fraction of vehicles for individual modes can be measured. Nevertheless, describing in a dynamic

framework the evolution of this fraction is challenging as physical interpretation of such a model is not possible. In this440

section, a dynamic model that combines concepts both from MFD and two-fluid model is attempted for the first time. In the

current MFD-based models, vehicles inside the reservoir always travel with a mean speed given by the MFD until they exit

the reservoir. Thus vehicles are not making any stops inside the reservoir in the classical MFD-based approach. Therefore,

it is not possible to estimate the stopped fraction of vehicles from the classical MFD-based framework. Simultaneously, the

two-fluid model is mainly descriptive about traffic states. It does not possess a dynamic equation to predict traffic evolution445

by estimating the stopped fraction of the vehicles. It is also shown in Appendix B that there is no well-defined functional

form between stopped fraction of vehicles and accumulations. A novel method is proposed in the present work to emulate

the stop-and-go patterns of the vehicles on a macroscopic scale. The trip-based MFD approach (Arnott, 2013; Daganzo and

Lehe, 2015; Mariotte et al., 2017) is an appropriate choice in this context as trips are already described at an individual level.

Mathematically, classical trip-based formulation can be expressed as,450

L j =
Z

t

t�t j(t)
v j ({nk(s)}k2M ) ds 8 j. (17)

Consider t j(t) is the travel time of a user of mode j, who entered the reservoir at time t. The mean speed at each time instant

depends on the accumulation of each mode in the reservoir, which is given by multi-modal mean speed MFD. Hence, the

area under the speed-time curve between the times, t � t j(t) and t gives the total travel distance, which is trip length L j. By

considering an alternation of moving distances with a running speed given by a two-fluid model and stopping intervals for

each trip, accumulations of stopped and moving vehicles can be estimated. The distribution of trip length, moving distances455
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The accumulation-based (bathtub) model

qin(t)

= −
dn t
dt

q t q t( ) ( ) ( )in out

qout(t)

qout (t) =
Q n(t)( )
Ltrip

The outflow-MFD is hard to calibrate in practice 
this is why the steady-state approximation is used



Wave propagation in a single reservoir
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Wave propagation

Demand surge

First illustration of the causality effect



Trip-based model
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Model solutions
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T(Nout(t)): experimented travel time for vehicle Nout
that exits at time t

V n(s)( )
t−T Nout (t )( )

t

∫ ds = L (Arnott, 2013)
(Lamotte & Geroliminis, 2016)

Qout (t) =Qin (t)+ n '(t)
(Accumulation-based
MNFD model)

Qout (t) =
Qin t −T Nout (t)( )( )V n(t)( )
V n t −T Nout (t)( )( )( )

(Delay differential equation with endogenous delay)

⇔

Model formulation Analytical resolution
(piecewise cst inflows)



tout(4)
tout(2)
tin(4)

Trip-based model (2)
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Advantages

• Direct access to entry and exit times 
for all individual vehicles

• Efficient numerical scheme as only 
the next vehicle to exit should be 
updated in practice at each event

• Straightforward extension to account 
for heterogeneous travel distances

N

t

Nin

1

2

3

4

5

6

An event-based numerical scheme

V(n1)

t*out(4)=L/V(n1)
V(n2)

Nout

(Leclercq et al, TRptB, 2017)



Multimodal extensions

• Accumulation-based version

• Trip-based version

• Accumulation-based version with delay

Paipuri, M., Leclercq, L., 2020. Bi-modal Macroscopic Traffic Dynamics in a Single Region. Transportation Research part-B, 
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FIGURE 4 | Estimated fits and empirical data for the considered regions. (A) City Center, (B) Wiedikon.

equation to resolve the reservoir dynamics given as follows,

dnc,r(t)

dt
= qin,c,r(t)− qout,c,r(t), (2)

where nc,r is accumulation of private cars in region r, qin,c,r
and qout,c,r are inflow and outflow, respectively. Forward Euler
scheme is used to discretize this Ordinary Differential Equation
(ODE), which yields as follows,

nt+1
c,r − ntc,r = !t

(

λtin,c,r −
Pc,r(ntc,r , n

t
p,r)

Lc,r

)

, (3)

where !t is time step, λtin,c,r is inflow demand for private
cars at time t in region r, accumulations of private cars and
public transport vehicles at time t are denoted by ntc,r and ntp,r ,
respectively and finally, Lc,r is the mean trip length for private
cars inside the region r. Note that inflow is assumed to be known
a priori in the current context and hence, no entry flow function
is considered. At all time instants, qin,c,r = λtin,c,r . Outflow

is computed from the private cars 3D-MFD as
Pc,r(ntc,r , n

t
p,r)

Lc,r
.

Accumulation of public transport vehicles, ntp,r , is provided to

the model as an input and accumulation of private cars, ntc,r , is
known at time t. Thus, using these two traffic state variables,
travel production of the private cars can be computed using fit
functional forms discussed in previous section. Moreover, it was
already shown in Paipuri and Leclercq (2020) that using partial
3D-MFDs improve the accuracy of the models and hence, only
partial 3D-MFD of private cars is considered.

Now considering the trip-based formulation, mathematically
it can be expressed as,

Lc,r =

∫ t

t−τc,r(t)
vc,r(nc,r(s), np,r(s)) ds, (4)

where τc,r(t) is the travel time of private cars at time t in
region r. The mean speed at each time instant depends on

the accumulations of private cars and public transport vehicles,
which is given by velocity 3D-MFD, vc,r . The trip starting times
of all vehicles are computed based on the inflow demand. The
vehicles leave the reservoir once they travel their assigned trip
lengths Lc,r . During the course of the trip, the mean speed is
updated whenever there is an entry or exit of a vehicle.

The outflow is delayed by the order of travel time at any time
instance, t in the delay accumulation-based model. This model
was first introduced by Friesz et al. (1989) and Ran et al. (1993) in
the context of link level traffic dynamics and later used byHaddad
and Zheng (2018) and Zhong et al. (2018) in the context of MFD-
based modeling. The delayed outflow of private cars in region r
can be expressed as,

qout,c,r(t + τc,r(t)) =
qin,c,r(t)

1+ dτc,r(t)
dt

, (5)

where, dτc,r(t)
dt can be computed as follows,

dτc,r(t)
dt =

∂τc,r

∂nc,r
(qin,c,r(t)− qout,c,r(t))

+
∂τc,r

∂nc,r

np,r(t + !t)− np,r(t)

!t
. (6)

The travel time function can be obtained from the velocity

3D-MFD, i.e., τc,r(nc,r , np,r) =
Lc,r

v(nc,r , np,r)
. The formulations

and numerical resolutions of various models are discussed in-
detail in Paipuri and Leclercq (2020). In the following sections,
inflow demand and trip lengths estimationmethods are discussed
in detail.

4. RE-CONSTRUCTION OF INFLOW
DEMAND FROM EMPIRICAL DATA

As explained earlier the bi-modal model is solved for the
accumulation of private cars only and therefore, it is enough to
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Consider τm ( t ) is the travel time of a user of mode m , who entered the reservoir at time t . The speed at each time in- 
stant depends on the total accumulation, n , in the reservoir, which is given by velocity 3D-MFD. Hence, the area under the 
speed-time curve between the times, t − τm (t) and t gives the total travel distance, which is trip length L m . The significant 
modeling difference in the trip-based model compared to the accumulation-based model is that the former considers the 
traveled distance explicitly. This results in the resolution of more accurate traffic dynamics during the transition compared 
to the accumulation-based model. This is crucial for bi-modal flows as buses and cars have different travel distances in the 
same region. This will be evident in the numerical results presented subsequently, where the trip-based results are closer 
to the reference solution. Event-based resolution proposed in Mariotte et al. (2017) , Leclercq et al. (2017) is used in the 
present work. The trip starting times of all vehicles are created based on the demand for each mode. Based on the cur- 
rent accumulation and trip length of each mode, the time at which the leading vehicle in the queue leaves the reservoir is 
computed. Similarly, the time at which the next vehicle enters the reservoir is known a priori from the demand. Depending 
on which event, entry or exit, happens first, the next event and time instance are updated. The entry supply, exit demand 
are applied to the first vehicle in the waiting list to enter the reservoir and the leading vehicle in the queue to exit the 
reservoir, respectively. 

Congestion propagation in the trip-based model is modeled by using the same principles as in the accumulation-based 
framework. For instance, for a mode m the entry supply time for a vehicle N is imposed by changing the time at which the 
vehicle can enter the reservoir. This can be expressed as follows, 

t N m, entry supply = t N−1 
m, entry + 1 

I m (n m , n ) ∀ m, (17) 
where t N−1 

m, entry is the entry time of previous vehicle N − 1 for mode m and t N 
m, entry supply is the time at which, vehicle N 

can enter the reservoir. As stated in the context of the accumulation-based model, the FIFO-based entry flow function is 
proposed in the framework of the trip-based model as well. As will be seen in the discussion, implementing FIFO-based 
entry in the trip-based framework is more straightforward compared to the accumulation-based model. 
2.5. Delay accumulation-based model 

The principal hypothesis of the delay accumulation-based model is that the outflow is delayed in the reservoir by the 
order of travel time at any time instance, t . This model was first introduced by Ran et al. (1993) , Friesz et al. (1989) in 
the context of link level traffic dynamics and later used by Haddad and Zheng (2018) , Zhong et al. (2018) in the context of 
MFD-based modeling. Consider vehicles that enter the reservoir at time t , at an inflow of q m ,in ( t ) for mode m . They leave 
the reservoir at time t + τm (t) , where τm ( t ) is the travel time inside the reservoir for the mode m . Under the assumptions 
of vehicle conservation and FIFO rule, vehicles of mode m that enter at time t must be equal to vehicles that leave the 
reservoir at time t + τm (t) . Mathematically, it can be expressed as, 

∫ t 
−∞ q m, in (s ) d s = ∫ t + τm (t ) 

−∞ q m, out (s ) d s. (18) 
Differentiating the Eq. (18) with respect to t and rearranging yields, 

q m, out (t + τm (t)) = q m, in (t) 
1 + d τm (t) 

d t 
. (19) 

Since, d τm (t) 
d t is not known a priori , it can be computed using chain rule as follows, 

d τm (t) 
d t = ∑ 

i = { c,b} 
∂τm 
∂n i d n i (t) 

d t ≡
∑ 

i = { c,b} 
∂τm 
∂n i (q i, in (t) − q i, out (t)) . (20) 

The travel time function can be obtained from the velocity MFD, i.e. , τm (n m , n ) = L m 
v (n m ,n ) . As the trip length of each mode, 

L m , is constant and v ( n m , n ) is a well-defined analytical function, a non-linear travel time function is obtained. Moreover, 
this obtained travel time function is well-defined and continuous with respect to accumulation. It is evident that as the 
accumulation reaches jam accumulation and travel time tends to infinity. This poses stability problems for cases with severe 
supply restrictions. The entry and exit flow functions in this framework are treated in the same way as in the case of the 
accumulation-based model and hence, details are omitted. Notice that the conventional accumulation-based model uses 
production MFD as the input to the model, whereas in the delay accumulation-based model velocity MFD is embedded in 
the travel time function. 

For the case of linear travel time function with only one mode, i.e. , τ = α + γ n, where α is the free-flow travel time and 
constant inflow rate of q in , it is proven in Carey and McCartney (2002) , the delay outflow at any time t n can be expressed 
as, 

q̄ out = q in ∑ n −1 
i =0 (q in γ ) i 

∑ n 
i =0 (q in γ ) i , (21) 
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It requires stabilization when inflow decreases
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Fig. 15. Verification with micro-simulations: Evolution of accumulation, outflow with time for cars and buses using single 3D-MFD. 
single 3D-MFD. As discussed earlier, this total production is split into partial productions based on the partial accumula- 
tion values in the MFD-based modeling. In the present case, the demand for buses is very small compared to cars, which 
results in a smaller accumulation of buses compared to cars and hence, smaller partial production. This can drive the 
solution into a different equilibrium state on the 3D-MFD plane. Now, the same scenario is considered with two segre- 
gated 3D-MFDs instead of a single aggregated 3D-MFD in order to verify if separating the 3D-MFD can result in accurate 
solutions. 

Fig. 16 presents the evolution of accumulation, outflow and mode share for the same scenario considered before, but 
using two segregated 3D-MFDs. The notable observation compared to previous results is that all MFD-based models reach 
the same steady state as micro-simulation. It is clear from the evolution of accumulation plots in Fig. 16 a and b. Analyzing 
the transition period in the accumulation evolution plots, it is clear that the conclusions made in previous test cases hold 
true. Similarly, the outflow evolutions of MFD-based models follow the micro-simulation ones. The delay in the outflow in- 
crease (or decrease) to the increase (or decrease) in demand can be clearly noticed in the delay accumulation-based and the 
trip-based models, where the results of stated MFD-based models are in very good agreement with the micro-simulation. 
The outflow decrease for cars during demand drop in the micro-simulation is little diffusive owing to the aggregation 
process. 



Segragated 3D MFD
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Fig. 16. Verification with micro-simulations: Evolution of accumulation, outflow and mode share ratio with time for cars and buses using two segregated 
3D-MFDs. 

Comparison of multimodal MFD extensions



Multi-reservoir systems
and traffic assignment

Batista, S., Leclercq, L., Menendez, M., 2021. Dynamic traffic assignment for 
regional networks with traffic-dependent trip lengths and regional paths. 
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Batista, S.F.A., Leclercq, L., 2019. Regional dynamic traffic assignment 
framework for MFD multi-regions models. Transportation Science, 
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Trip lengths estimation - cellphone data
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Partitioning

• A preliminary partitioning of the Dallas network is shown in the
following figure.
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important result as it shows that there is no need for specific analysis at the regional level to characterize the trip lengths dependency
to the traffic conditions. Further research must be done with data from different network topologies to verify the existence of such
relationship and its universality. However, this first step looks promising because of very similar fit coefficients observed in the
present case. Furthermore, this analysis show that the detour ratio at high (free-flow) mean speeds falls between range 1.2 to 1.3, see
coefficient a in Table 9. This confirms the previous observations from the literature (see Yang et al. (2018a) and references within). As
only straight line distance between the origin and the destination of a trip is used to estimate the detour ratio, this relationship can be
used for the trajectories with poor spatial resolution to estimate the actual trip distance. This is also remarkable finding as this can be
used to provide a rough estimate of trip lengths without requiring extensive analysis of experimental data or the network topology.

7. Estimation of path flow distribution

The principal input data for any MFD-based simulation are the underlying MFD, the macro-paths and their corresponding trip
lengths, which have been dealt with so far. As seen earlier, there can be more than one feasible macro-path between a given
macroscopic OD pair. It is clear that almost all the major macro-paths, i.e., those that have higher flows compared to the others in the
present partitioning, cross reservoir 1, which is the downtown area. Thus, considering just one major macro-path between an OD pair
and assigning the total flow to this path might lead to unrealistically high flows in reservoir 1, which might result in a gridlock.
Hence, depending on the relative flow between all the feasible macro-paths for a given OD pair, it is necessary to have more than one
macro-path. For instance, for internal trips that start and finish in reservoir 1, it can be observed that 97% of the trips have the macro-

Fig. 24. Relationship between detour ratio and normalized mean speeds. (a) Entire network. (b) Reservoir 1. (c) Reservoir 2. (d) Reservoir 3. (d)
Reservoir 4. (e).

Table 9
Fit parameters and R2 values for mean speed - detour ratio relationship.
Reservoir Fit parameters R2

a b c

All 1.34 6.44 −9.47 0.99
1 1.36 5.57 −9.29 0.98
2 1.24 3.74 −6.96 0.97
3 1.28 5.01 −9.64 0.98
4 1.21 6.26 −9.68 0.98
5 1.21 5.01 −9.29 0.98
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LBS data over Dallas city (US)
– 6 months

two nodes is computed using NetworkX library. The network shortest path is represented as the sequence of nodes at each inter-
section between the given two nodes. Consequently, the GPS locations of the nodes in the network shortest path are added to the trip
between these two sparse records. Fig. 3b presents the traces of the trips considered after computing the network shortest paths
between the sparse records. It can be clearly seen that the trajectory of each trip is matched to the network after the enrichment
process.

Another trivial method used to enrich the trips is to estimate the network shortest path between the origin and destination
locations of each trip. However, this method fails to capture the longer paths that users tend to take during peak hour congestion
periods. On the contrary, the trip enrichment scheme proposed in the current work keeps the original structure of the actual trip,
while only adding the network shortest path between the records that are sparsely placed. Hence, this can be considered as the closest
approximation to the actual path that the user had taken. The main advantage of this method is that the enriched trips conform to the
actual network, which can be observed in Fig. 3b. The main limitation is that the travel time on the computed network shortest path
might not be consistent with the actual travel time between these two records. Using the speed data on individual links, it is possible
to estimate the travel time for the computed network shortest path. If this travel time is inconsistent with the actual travel time, i.e.,
the difference between the timestamps of the records, another network path that satisfies the actual travel time must be estimated.
However, this demands considerable computational resources due to the huge mass of data in the present case. Moreover, it is shown
in the subsequent sections that the errors of the present framework are within an acceptable tolerance.

Whenever the trajectory of a trip is enhanced between two sparse records, timestamps are also interpolated to match the spatial
data. The timestamps are interpolated based on the average speed between the two records in the original trajectory. Hence, this
method transforms the sparse spatial and temporal data into dense data, thereby improving the overall accuracy of traveled distances.
Fig. 4a and b present a sample set of traces of trips before and after the enrichment method, respectively. It is clear from the plots that
the original trips have sparse records and that enhancing the trips results in high resolution traces. It is noteworthy that the trips in
Fig. 4a and b are randomly sampled and do not correspond to the same set of trips.

Fig. 3. Trip enhancement method. (a) Original traces of low resolution trips. (b) Traces of the trips after the enrichment method.

Fig. 4. Trip enhancement method. (a) Randomly sampled original traces. (b) Traces after the enrichment method.

M. Paipuri, et al. 7UDQVSRUWDWLRQ�5HVHDUFK�3DUW�&������������������
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Trip length dynamics

Paipuri, M., Xu, Y., Gonzalez, M.C., Leclercq, L., 2020. Estimating MFDs, Trip 
Lengths and Path Flow Distributions in a Multi-region Setting Using Mobile Phone 
Data. 



ControlApplication to the Lyon Metropolis

Mariotte, G., Leclercq, L., Batista, S.F.A., Krug, J., Paipuri, M., 2020. Calibration and validation of multi-reservoir MFD models: A case study 
in Lyon. Transportation Research part B. 

MFDUrbaSim (A python open-source MFD simulator): https://github.com/licit-lab/MFDurbanSim



MFD simulation for Lyon metropolis
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2.2. Simulation of traffic states for the Lyon metropolitan area (France)

corresponds to the urban area inside the first ring road of Lyon. This network comprises
27,000 links, with an area of 170 km2 and where around 1 million trips are recorded each day.
The network configuration with its environment is given in Figure 2.5. This area exchanges
traffic with its surroundings via mainly 4 freeways related to 4 origin/destination cities as
presented in Figure 2.5: freeway A6 from/to Paris, freeway A42 from/to Geneva, freeway
A43 from/to Grenoble and freeway A7 from/to Marseille.

Paris Geneva

Grenoble

Marseille

N

2 km

FIG. 2.5 – The network of Lyon-Villeurbanne with its urban environment (background map credits: c© Open-
StreetMap)

The available network data includes the number of lanes and the signal settings at each
node with traffic lights. As mentioned in section ..., this can help to determine some charac-
teristic values for the MFD estimation.

Demand data
The demand was estimated for a typical weekday in a preliminary study from J. Krug and A.
Burianne, engineers members of the MAGnUM project. Their study uses a four-step model
based on household trip surveys and socio-demographic data to improve the localization of
trip origins and destinations. The estimated OD matrix is defined for each hour of the day
at the level of IRIS urban areas, the French partitioning system for demographical data. The
spatial extension of an IRIS area may thus vary as its definition is based on a fixed range
of inhabitants, workers, etc. In the network studied, each IRIS area comprises around 2000
inhabitants and may extend from 0.5 to 2 km2. The OD matrix also includes the demand for
trips from and to outside the perimeter of interest.

For this first application example, the network will be clustered into reservoirs by ag-
gregating several neighboring IRIS areas together (demand-oriented clustering). The total

p. 47 / 73
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Demand estimation

The OD matrix at the level of IRIS zones comes from Lyon authorities 
(Household survey 2015)
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The 1-reservoir case
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The 5-reservoir case – user equilibrium
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The 5-reservoir case – best fit
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ControlAssessing ride-sharing services

Alisoltani, N., Leclercq, L., Zargayouna, M., 2021. Can dynamic ride-sharing reduce traffic congestion? Transportation Research part B. 



Test cases
Lyon 6 + Villeurbanne

Scale of 25 km2

62450 requests
11235 Service requests
1,883 nodes and 3383 links
6:30 to 10:30 AM (morning peak)
Rolling horizon: 20 min
Optimization time step: 10 min

42/45

Test Case – Northern Lyon



Test cases
Lyon

Scale of 80 km2

484,690 requests
205,308 Service requests
11,314 origin/destination set points
6 to 10 AM (morning peak)
Rolling horizon: 20 min
Optimization time step: 10 min

43/45

Test case – Full Lyon



Traffic situation for the number of sharing 0 with different market-shares

Market-share 100%: 5.5%

Market-share 80%: 4.4%

Market-share 60%: 3.3%

Market-share 40%: 2.3%

Market-share 20%: 1.1%

Increase in travel time

Northern Lyon

Traffic dynamics for different market share



Traffic dynamics for different sharing level
Northern Lyon



Application to full Lyon Metropolis (1)
Full Lyon



Application to full Lyon Metropolis (2)

126 Chapter 6. Transportation Analyses

Figure 6.16 and figure 6.17 shows the total travel time and distance for all the service and

personal cars in the network for different market-shares when the number of sharing is 0,

1, and 2. It is clear that with the number of sharing zero, total travel time and distance

increases with increasing the market-share. Market-share = 100% with the number of

sharing zero can increase the total travel time by 5.6% and the total travel distance by

3.7%. Then, sharing can fix this problem by reducing the total travel time by 30.0% with

the number of sharing 1 and 41.1% with the number of sharing 2 compared to the number

of sharing 0. Furthermore, the total travel distance is reduced by 25.5% with the number

of sharing 1 and 36.0% with the number of sharing 2.

6.2.4 Number of sharing
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Figure 6.18: Traffic situation for market-share 100% with different numbers of sharing
(large-scale)

Full Lyon



Number of 
sharing

Number of trips Number of cars

0 205124 17102
1 105745 9489
2 72160 6826
3 69790 6595

Application to full Lyon Metropolis (3)



Impact of dynamic ride-sharing on large-scale network
Market-share

Total travel distance for all the cars for the number of sharing 0, 1 and 2 with different market-shares

3.7%

-25.5%

-36.0%



Impact of dynamic ride-sharing on large-scale network
Capacity of vehicles
Regular vehicle: capacity = 4, nshare = 3
Big vehicle: capacity = 6, nshare = 5
Van-pooling: capacity = 10, nshare = 9
Shuttle-sharing: capacity = 20, nshare = 19

Traffic situation for different vehicle capacity (market-share = 100%)

Configuration

Shared vehicles

Number of trips Number of 
cars

MS: 100%
Capacity = 4 69790 6595
Capacity = 6 63304 5714
Capacity = 10 46448 4253
Capacity = 20 30004 2785



ControlAn optimal route guidance strategy 
based on avoidance maps

(Leclercq, L., Ladino, A., Becarie, C., 2021. Enforcing Optimal Routing Through Dynamic Avoidance Maps. Transportation Research part B, )



(a)

Urban area

Road network

region i

pi
t
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Urban area
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updated path

(c)

Route guidance based on avoidance maps

Patent filing under review



Manhattan network
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Assessment on a toy network
45% rerouted vehicles
7.4% mean increase in distance



Assessment on a real network
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Northern Lyon network

ERC PoC MAGnUM+
(prototype and first field tests)



Special thanks to the MAGnUM team!
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