

21th Transport Research Conference Monte Verità / Ascona, 12-14 September 2021

Multiscale and Multimodal Traffic Modelling Approach for Sustainable Management of Urban Mobility

Recent advances in multimodal MFD urban models

Ludovic Leclercq

Univ. Gustave Eiffel, ENTPE

September, 12th, 2021

Outline

- Macroscopic urban models
- New insights on multimodal MFD from the pNEUMA experiment
- The existing formulations for MFD models
- Multi-reservoir systems and traffic assignment
- Applications of NMFD approaches
 - Large-scale simulation of Lyon Metropolis
 - Overall assessment of a ride-sharing system
 - An optimal route guidance strategy based on avoidance maps
 - Trip length calibration and perimeter control

Introduction to macroscopic urban models

Transportation models

Large-scale dynamic urban simulation (1)

Large-scale dynamic urban simulation (2)

MFD definition

FD + Network structure (topology / signal timings) + Route choices = MFD

Multimodal MFD extension

New insights on multimodal MFD from the pNEUMA experiment

Paipuri, M., Barmpounakis, E., Geroliminis, N., Leclercq, L., 2021. Empirical Observations of Multi-modal Network-level Models: Insights from the pNEUMA Experiment. *Transportation Research part C.*

Experimental setting

π neuma 🎇

https://open-traffic.epfl.ch/

π neuma 🎇 at a glance

Hovering simultaneously over different areas

Monday to Friday

COPEN ACCESS

Free distribution.

No barriers.

MASSIVE URBAN TRAJECTORY DATASET

More than 0.5 million trajectories

Ideal for multimodal research

Buses

day

100+ INTERSECTIONS Signalised or not

GLOBAL IMPACT

Made for researchers around the world

Five flight sessions for 2.5 hours per

Stop searching for data and start your analyses!

Cars

20 PTWs

Barbounakis and Geroliminis, 2020, part-C

2D MFD

Unimodal speed regression

Multimodal speed regression

Comparison uni vs. multi regression

	p-values						$v_{f,j}$		<i>R</i> ²		RMSRE	
Mode	Uni-	Multi-					I.a.:	M14	I.I.a.:	Multi	Ini	N/1-14
	n _m	n _c	n _t	n _b	n _m	n _p	Uni-	iviulti-	Uni-	Iviuiti-	Um-	
Car	0.01	0.01	0	0	0.60	0	4.06	4.06	0.01	0.75	0.125	0.065
Taxi	0	0.80	0	0	0.72	0	4.05	4.05	0.60	0.68	0.071	0.063
Bus	0	0.14	0	0	0.06	0.48	2.79	2.79	0.15	0.30	0.123	0.112
MV	0	0.01	0	0	0.12	0.07	3.66	3.66	0.19	0.43	0.114	0.098
PTW	0	0	0.06	0	0.63	0	4.90	4.90	0.04	0.78	0.074	0.071

The multimodal two-fluid model

Running speed $v_r = v_{f,r} (f_r)^{\check{n}} \equiv v_{f,r} (1 - f_s)^{\check{n}}$,

Mean speed
$$v = v_{f,r} (f_r)^{\check{n}+1} \equiv v_{f,r} (1-f_s)^{\check{n}+1}.$$

Fraction of vehicles that are stopped during a given time internal, i.e., $f_s = \frac{T_s}{T}$, The mean stoped time / m over the mean travel time / m

(Herman and Prigogine, 1979)

The multimodal counterpart

$$v_{r,j} = v_{f,r,j} \prod_{k \in \mathscr{M}} (1 - f_{s,k})^{\check{n}_{k,j}}, \ \forall j \in \mathscr{M} \text{ and } \mathscr{M} = \{c,t,b,m,p\},$$
$$v_j = v_{f,r,j} (1 - f_{s,j}) \prod_{k \in \mathscr{M}} (1 - f_{s,k})^{\check{n}_{k,j}}, \ \forall j \in \mathscr{M} \text{ and } \mathscr{M} = \{c,t,b,m,p\}.$$

The Uni two-fluid model

The Multi two-fluid model

Estimating fs - ergodicity assumption

Weak ergodicity (based on probe sampling)

Strong ergodicity (based on probe sampling)

$$\hat{f}_{s} = \frac{T_{s}}{\overline{T}},$$

 $\tilde{f}_{s} = \left\langle \frac{T_{s}}{\overline{T}} \right\rangle.$ (Ardekani, 1984)

 $\overline{\mathbf{T}}$

The existing formulations for MFD models

Mariotte, G., Leclercq, L., 2019. Flow exchanges in multi-reservoir systems with spillbacks. *Transportation Research part B*, 122, 327-349.

Mariotte, G., Leclercq, L., Laval, J.A., 2017. Macroscopic urban dynamics: Analytical and numerical comparisons of existing models. *Transportation Research Part B*,

The single reservoir setting

Classical dynamic approach

© Symuvia platform

The accumulation-based (bathtub) model

The outflow-MFD is hard to calibrate in practice this is why the steady-state approximation is used

$$q_{out}(t) = \frac{Q(n(t))}{L_{trip}}$$

Wave propagation in a single reservoir

Trip-based model

Trip-based model (2)

- Direct access to entry and exit times for all individual vehicles
- Efficient numerical scheme as only the next vehicle to exit should be updated in practice at each event
- Straightforward extension to account for heterogeneous travel distances

Multimodal extensions

Accumulation-based version

$$\frac{dn_i(t)}{dt} = q_{in,i}(t) - q_{out,i}(t) \text{ with } q_{out,i}(t) = \frac{n_i}{n} \frac{P(n_i \dots)}{L_i}$$

Trip-based version

$$L_{c,r} = \int_{t-\tau_{c,r}(t)}^{t} v_{c,r}(n_{c,r}(s), n_{p,r}(s)) \, \mathrm{d}s_{r}$$

Accumulation-based version with delay

$$\int_{-\infty}^t q_{m,\mathrm{in}}(s) \,\mathrm{d}s = \int_{-\infty}^{t+\tau_m(t)} q_{m,\mathrm{out}}(s) \,\mathrm{d}s.$$

$$q_{m,\text{out}}(t+\tau_m(t)) = \frac{q_{m,\text{in}}(t)}{1+\frac{\mathrm{d}\tau_m(t)}{\mathrm{d}t}}.$$

It requires stabilization when inflow decreases

Paipuri, M., Leclercq, L., 2020. Bi-modal Macroscopic Traffic Dynamics in a Single Region. Transportation Research part-B,

Comparison of multimodal MFD extensions

(b) Accumulation vs. time for buses.

Single 3D MFD

(c) Outflow vs. time for cars.

(d) Outflow vs. time for buses.

Comparison of multimodal MFD extensions

(c) Outflow vs. time for cars.

(d) Outflow vs. time for buses.

Multi-reservoir systems and traffic assignment

Batista, S., Leclercq, L., Menendez, M., 2021. Dynamic traffic assignment for regional networks with traffic-dependent trip lengths and regional paths. *Transportation Research part C*,

Batista, S.F.A., Leclercq, L., 2019. Regional dynamic traffic assignment framework for MFD multi-regions models. *Transportation Science*,

Multi-reservoir systems

Estimation of the trip lengths

(Batista et al., 2018)

Impacts on the simulation results

Trip lengths estimation - cellphone data

Application to the Lyon Metropolis

Mariotte, G., Leclercq, L., Batista, S.F.A., Krug, J., Paipuri, M., 2020. Calibration and validation of multi-reservoir MFD models: A case study in Lyon. *Transportation Research part B*.

MFDUrbaSim (A python open-source MFD simulator): https://github.com/licit-lab/MFDurbanSim

MFD simulation for Lyon metropolis

Demand estimation

The OD matrix at the level of IRIS zones comes from Lyon authorities (Household survey 2015)

The 1-reservoir case

The 5-reservoir case – user equilibrium

The 5-reservoir case – best fit

The 10-reservoir case – best fit

Assessing ride-sharing services

Alisoltani, N., Leclercq, L., Zargayouna, M., 2021. Can dynamic ride-sharing reduce traffic congestion? Transportation Research part B.

Test Case – Northern Lyon

Test cases

Lyon 6 + Villeurbanne Scale of 25 km² 62450 requests 11235 Service requests 1,883 nodes and 3383 links 6:30 to 10:30 AM (morning peak) Rolling horizon: 20 min Optimization time step: 10 min

Test case – Full Lyon

Test cases Lyon

Scale of 80 km² 484,690 requests 205,308 Service requests 11,314 origin/destination set points 6 to 10 AM (morning peak) Rolling horizon: 20 min Optimization time step: 10 min

Traffic dynamics for different market share

Northern Lyon

Traffic situation for the number of sharing 0 with different market-shares

Traffic dynamics for different sharing level

Application to full Lyon Metropolis (1)

Application to full Lyon Metropolis (2)

Application to full Lyon Metropolis (3)

Number of sharing	Number of trips	Number of cars
511011118		
0	205124	17102
1	105745	9489
2	72160	6826
3	69790	6595

Impact of dynamic ride-sharing on large-scale network

2.4 ×10⁶ 2.3 2.2 3.7% Total travel distance (km) 8. 6. 7 1.7 8. 1.7 -25.5% -36.0% 1.7 Number of sharing = 0 1.6 umber of sharing = 1 Number of sharing = 2 1.5 60 100 80 0 20 40 Market-share(%)

Market-share

Total travel distance for all the cars for the number of sharing 0, 1 and 2 with different market-shares

Impact of dynamic ride-sharing on large-scale network

Capacity of vehicles Regular vehicle: capacity = 4, nshare = 3 Big vehicle: capacity = 6, nshare = 5 Van-pooling: capacity = 10, nshare = 9 Shuttle-sharing: capacity = 20, nshare = 19

	Shared vehicles				
Configuration	Number of trips	Number of cars			
MS: 100%					
Capacity = 4	69790	6595			
Capacity $= 6$	63304	5714			
Capacity = 10	46448	4253			
Capacity $= 20$	30004	2785			

Traffic situation for different vehicle capacity (market-share = 100%)

An optimal route guidance strategy based on avoidance maps

(Leclercq, L., Ladino, A., Becarie, C., 2021. Enforcing Optimal Routing Through Dynamic Avoidance Maps. Transportation Research part B,)

Route guidance based on avoidance maps

Assessment on a toy network

Assessment on a real network

Special thanks to the MAGnUM team!

Multiscale and Multimodal Traffic Modelling Approach for Sustainable Management of Urban Mobility

Thank you for your attention

@LudoLeclercq
@erc_magnum

© photo credits - Fotolia.com