Recent advances in multimodal MFD urban models

Ludovic Leclercq

Univ. Gustave Eiffel, ENTPE
September, 12th, 2021

Outline

- Macroscopic urban models
- New insights on multimodal MFD from the pNEUMA experiment
- The existing formulations for MFD models
- Multi-reservoir systems and traffic assignment
- Applications of NMFD approaches
- Large-scale simulation of Lyon Metropolis
- Overall assessment of a ride-sharing system
- An optimal route guidance strategy based on avoidance maps
- Trip length calibration and perimeter control

Introduction to macroscopic urban models

Transportation models

Large-scale dynamic urban simulation (1)

Large-scale dynamic urban simulation (2)

MFD definition

Multimodal MFD extension

(a) Production MFD surface.

(b) Velocity MFD surface.

New insights on multimodal MFD from the pNEUMA experiment

Paipuri, M., Barmpounakis, E., Geroliminis, N., Leclercq, L., 2021. Empirical Observations of Multi-modal Network-level Models: Insights from the pNEUMA Experiment. Transportation Research part C.

Experimental setting

$\pi_{\text {neume }}$ \&

EPFL

https://open-traffic.epfl.ch/

2D MFD

(a)

(b)

Unimodal speed regression

Multimodal speed regression

Comparison uni vs. multi regression

Mode	p-values					$v_{f, j}$		R^{2}		RMSRE		
	Uni-	Multi-					Multi-	Uni-	Multi-	Uni-	Multi-	
	n_{m}	n_{c}	n_{t}	n_{b}	n_{m}	n_{p}						
Car	0.01	0.01	0	0	0.60	0	4.06	4.06	0.01	0.75	0.125	0.065
Taxi	0	0.80	0	0	0.72	0	4.05	4.05	0.60	0.68	0.071	0.063
Bus	0	0.14	0	0	0.06	0.48	2.79	2.79	0.15	0.30	0.123	0.112
MV	0	0.01	0	0	0.12	0.07	3.66	3.66	0.19	0.43	0.114	0.098
PTW	0	0	0.06	0	0.63	0	4.90	4.90	0.04	0.78	0.074	0.071

The multimodal two-fluid model

$$
\begin{array}{cl}
\text { Running speed } & v_{r}=v_{f, r}\left(f_{r}\right)^{\check{n}} \equiv v_{f, r}\left(1-f_{s}\right)^{\check{n}}, \\
\text { Mean speed } & v=v_{f, r}\left(f_{r}\right)^{\check{n}+1} \equiv v_{f, r}\left(1-f_{s}\right)^{\check{n}+1} .
\end{array}
$$

Fraction of vehicles that are stopped during a given time internal, i.e., $\quad f_{s}=\frac{T_{s}}{T}$,
The mean stoped time $/ \mathrm{m}$ over the mean travel time $/ \mathrm{m}$
(Herman and Prigogine, 1979)

The multimodal counterpart

$$
\begin{gathered}
v_{r, j}=v_{f, r, j} \prod_{k \in \mathscr{M}}\left(1-f_{s, k}\right)^{\check{n}_{k, j}}, \forall j \in \mathscr{M} \text { and } \mathscr{M}=\{c, t, b, m, p\}, \\
v_{j}=v_{f, r, j}\left(1-f_{s, j}\right) \prod_{k \in \mathscr{M}}\left(1-f_{s, k}\right)^{\check{n}_{k, j}}, \forall j \in \mathscr{M} \text { and } \mathscr{M}=\{c, t, b, m, p\} .
\end{gathered}
$$

The Uni two-fluid model

(a)

(b)

(c)

(d)

(e)

The Multi two-fluid model

Estimating fs - ergodicity assumption

Weak ergodicity (based on probe sampling) $\quad \hat{f}_{s}=\frac{\bar{T}_{s}}{\bar{T}}$,
Strong ergodicity (based on probe sampling) $\quad \tilde{f}_{s}=\left\langle\frac{T_{S}}{T}\right\rangle$. (Ardekani, 1984)

(a)

(b)

(c)

The existing formulations for MFD models

Mariotte, G., Leclercq, L., 2019. Flow exchanges in multi-reservoir systems with spillbacks. Transportation Research part B, 122, 327-349.

Mariotte, G., Leclercq, L., Laval, J.A., 2017. Macroscopic urban dynamics: Analytical and numerical comparisons of existing models. Transportation Research Part B,

The single reservoir setting

Classical dynamic approach

Reservoir (NMFD) approach

The accumulation-based (bathtub) model

The outflow-MFD is hard to calibrate in practice this is why the steady-state approximation is used

$$
q_{\text {out }}(t)=\frac{Q(n(t))}{L_{\text {trip }}}
$$

Wave propagation in a single reservoir

Trip-based model

$\int_{t-T\left(N_{\text {out }}(t)\right)}^{t} V(n(s)) d s=L$
(Arnott, 2013)
(Lamotte \& Geroliminis, 2016)
$T\left(N_{\text {out }}(t)\right)$: experimented travel time for vehicle $N_{\text {out }}$ that exits at time t
$\Leftrightarrow Q_{\text {out }}(t)=\frac{Q_{\text {in }}\left(t-T\left(N_{\text {out }}(t)\right)\right) V(n(t))}{\left.V\left(n\left(t-\underline{T\left(N_{\text {out }}(t)\right.}\right)\right)\right)}$
(Delay differential equation with endogenous delay)
$Q_{\text {out }}(t)=Q_{\text {in }}(t)+n^{\prime}(t)$
(Accumulation-based MNFD model)

Trip-based model (2)

An event-based numerical scheme

Advantages

- Direct access to entry and exit times for all individual vehicles
- Efficient numerical scheme as only the next vehicle to exit should be updated in practice at each event
- Straightforward extension to account for heterogeneous travel distances

Multimodal extensions

- Accumulation-based version

$$
\frac{d n_{i}(t)}{d t}=q_{\text {in }, i}(t)-q_{\text {out }, i}(t) \text { with } q_{\text {out }, i}(t)=\frac{n_{i}}{n} \frac{P\left(n_{i} \ldots\right)}{L_{i}}
$$

- Trip-based version

$$
L_{c, r}=\int_{t-\tau_{c, r}(t)}^{t} v_{c, r}\left(n_{c, r}(s), n_{p, r}(s)\right) \mathrm{d} s,
$$

- Accumulation-based version with delay

$$
\int_{-\infty}^{t} q_{m, \text { in }}(s) \mathrm{d} s=\int_{-\infty}^{t+\tau_{m}(t)} q_{m, \text { out }}(s) \mathrm{d} s . \quad \quad q_{m, \text { out }}\left(t+\tau_{m}(t)\right)=\frac{q_{m, \text { in }}(t)}{1+\frac{\mathrm{d} \tau_{m}(t)}{\mathrm{d} t}}
$$

It requires stabilization when inflow decreases

Comparison of multimodal MFD extensions

Single 3D MFD

(a) Accumulation $v s$. time for cars.

(b) Accumulation vs. time for buses.

(d) Outflow vs. time for buses.

Comparison of multimodal MFD extensions

Segragated 3D MFD

(a) Accumulation vs. time for cars.

(c) Outflow vs. time for cars

(b) Accumulation $v s$. time for buses

(d) Outflow vs. time for buses

Multi-reservoir systems and traffic assignment

Batista, S., Leclercq, L., Menendez, M., 2021. Dynamic traffic assignment for regional networks with traffic-dependent trip lengths and regional paths. Transportation Research part C,

Batista, S.F.A., Leclercq, L., 2019. Regional dynamic traffic assignment framework for MFD multi-regions models. Transportation Science,

Multi-reservoir systems

Estimation of the trip lengths

Impacts on the simulation results

Time-evolution of the accumulation

Trip lengths estimation - cellphone data

LBS data over Dallas city (US) - 6 months

Paipuri, M., Xu, Y., Gonzalez, M.C., Leclercq, L., 2020. Estimating MFDs, Trip Lengths and Path Flow Distributions in a Multi-region Setting Using Mobile Phone

Application to the Lyon Metropolis

Mariotte, G., Leclercq, L., Batista, S.F.A., Krug, J., Paipuri, M., 2020. Calibration and validation of multi-reservoir MFD models: A case study in Lyon. Transportation Research part B.

MFDUrbaSim (A python open-source MFD simulator): https://github.com/licit-lab/MFDurbanSim

MFD simulation for Lyon metropolis

Demand estimation

The 1-reservoir case

The 5-reservoir case - user equilibrium

Gap $=4.9$
3% of OD with a Gap ${ }^{o d}>0.2$

The 5-reservoir case - best fit

Gap $=5.4$
7% of OD with a Gapod >0.2

The 10-reservoir case - best fit

Gap $=61$
31 \% of OD with a Gap ${ }^{o d}>0.2$

Assessing ride-sharing services

Alisoltani, N., Leclercq, L., Zargayouna, M., 2021. Can dynamic ride-sharing reduce traffic congestion? Transportation Research part B.

Test Case - Northern Lyon

Test cases

Lyon 6 + Villeurbanne
Scale of $25 \mathrm{~km}^{2}$ 62450 requests
11235 Service requests
1,883 nodes and 3383 links
6:30 to 10:30 AM (morning peak)
Rolling horizon: 20 min
Optimization time step: 10 min

Test case - Full Lyon

Test cases

Lyon

Scale of $80 \mathrm{~km}^{2}$
484,690 requests
205,308 Service requests
11,314 origin/destination set points
6 to 10 AM (morning peak)
Rolling horizon: 20 min
Optimization time step: 10 min

Traffic dynamics for different market share

Northern Lyon

Increase in travel time
Market-share 100\%: 5.5\%
Market-share 80\%: 4.4\%
Market-share 60\%: 3.3\%

Market-share 40\%: 2.3\%
Market-share 20\%: 1.1\%

Traffic situation for the number of sharing 0 with different market-shares

Traffic dynamics for different sharing level

Application to full Lyon Metropolis (1)

Application to full Lyon Metropolis (2)

Full Lyon

Application to full Lyon Metropolis (3)

Number of sharing	Number of trips	Number of cars
0	205124	17102
1	105745	9489
2	72160	6826
3	69790	6595

Impact of dynamic ride-sharing on large-scale network

Market-share

Total travel distance for all the cars for the number of sharing 0,1 and 2 with different market-shares

Impact of dynamic ride-sharing on large-scale network

Capacity of vehicles

Regular vehicle: capacity $=4$, nshare $=3$
Big vehicle: capacity $=6$, nshare $=5$
Van-pooling: capacity $=10$, nshare $=9$
Shuttle-sharing: capacity $=20$, nshare $=19$

Coniguration	Shared vehicles	
	Number of trips	Number of cars
MS: 100%		
Capacity $=4$	69790	6595
Capacity $=6$	63304	5714
Capacity $=10$	46448	4253
Capacity $=20$	30004	2785

Traffic situation for different vehicle capacity (market-share $=\mathbf{1 0 0 \%}$)

An optimal route guidance strategy based on avoidance maps

Route guidance based on avoidance maps

(b)

(c)

Assessment on a toy network

Assessment on a real network

Special thanks to the MAGnUM team!

Thank you for your attention

