Modeling Emerging Urban Mobility

Prof. Dr. Constantinos Antoniou Technical University of Munich Department of Civil, Geo and Environmental Engineering Chair of Transportation Systems Engineering http://tse.bgu.tum.de , http://web.mit.edu/costas/www/

https://h2020-momentum.eu This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 815069

Solutions for Urban Mobility

Background and motivation Overall approach Case studies Disaggregate mode choice model 0 Modeling purchase intention/decision for cargo bikes 0

Prof. Dr. Constantinos Antoniou (TUM) | Swiss Transport Research Conference 2021 | Keynote Presentation | 13.9.2021

D96

WALT DISNEY PRODUCTIONS

Prof. Dr. Constantinos Antoniou (TUM) | Swiss Transport Research Conference 2021 | Keynote Presentation | 13.9.2021

Prof. Dr. Constantinos Antoniou (TUM) | Swiss Transport Research Conference 2021 | Keynote Presentation | 13.9.2021

Prof. Dr. Constantinos Antoniou (TUM) | Swiss Transport Research Conference 2021 | Keynote Presentation | 13.9.2021

Source: NACTO

Motivation

Shared mobility services were abruptly introduced

No prior planning, no understanding and evaluation

Motivation

Shared mobility services were abruptly introduced

No prior planning, no understanding and evaluation

Open questions include

- -Spatio-temporal demand patterns for the different services
- -Factors impacting demand
- -Factors attracting users from other modes of transport to shared services -Interaction between the different shared services (incl. "internal" competition)
- -Shared services' impact on the VKT
- -Identification of policies required for efficient and effective urban operations

Motivation

Shared mobility services were abruptly introduced

No prior planning, no understanding and evaluation

Open questions include

- -Spatio-temporal demand patterns for the different services
- -Factors impacting demand
- -Factors attracting users from other modes of transport to shared services -Interaction between the different shared services (incl. "internal" competition)
- -Shared services' impact on the VKT
- -Identification of policies required for efficient and effective urban operations

Modelling of shared mobility requires agent based approaches (based on the literature)

Background and motivation Overall approach Case studies Disaggregate mode choice model 0 Modeling purchase intention/decision for cargo bikes 0

H2020 MOMENTUM - Needs & objectives

Many cities continue to use the traditional strategic four-step modelling approach

(Especially) small & medium sized cities do not have the resources to develop new models

Prof. Dr. Constantinos Antoniou (TUM) | Swiss Transport Research Conference 2021 | Keynote Presentation | 13.9.2021

- Need for an intermediate modelling approach, which can be integrated into the existing models

https://h2020-momentum.eu

Modelling Emerging Transport Solutions for Urban Mobility

H2020 project, topic LC-MG-1-3-2018 'Harnessing and understanding the impacts of changes in urban mobility on policy making by city-led innovation for sustainable urban mobility'

Start: 1st May 2019 | Duration: 36 months | Budget: 2.9 M€

Consortium: EMT Madrid (Coordinator) + 3 cities (Thessaloniki, Leuven, Regensburg) + 2 providers of technology solutions for transport planning (Nommon, Aimsun) + 1 transport consultancy (TML) + 3 research institutions (CERTH, TU Munich, Deusto) + POLIS + UITP

Prof. Dr. Constantinos Antoniou (TUM) | Swiss Transport Research Conference 2021 | Keynote Presentation | 13.9.2021

https://h2020-momentum.eu

Intermediate modelling approach

Red colour shaded boxes indicate the existing components in the traditional four-step transport modelling approach

- BS: Bike-Sharing Car-Sharing CS:
- RS: **Ride-Sharing**

Narayanan, S., Salanova Grau, J. M., Frederix, R., Tympakianaki, A., & Antoniou, C. (2021). Modelling of shared mobility services - An approach in between traditional strategic models and agent-based models. In 24th Euro Working Group on Transportation Meeting, 8 Sep. 2021.

Prof. Dr. Constantinos Antoniou (TUM) | Swiss Transport Research Conference 2021 | Keynote Presentation | 13.9.2021

Trip generation (1)
Trip distribution (2)
OD matrix
Data disaggregation
Demand for convention
Conventional aggregate mode choice model (6)
Traffic assignment (7)
No, criteria)

Step	
 Synthetic population generation 	Iterative proport data-driven sam procedure for er
 Disaggregate mode choice model 	Multinomial logi household surve
5. Fleet management	Service optimiza service simulato
8. Emission calculation	Macroscopic em
9. Car-ownership	Multinomial logi
10. Induced demand estimation	Nested logit mod

OR – Operations Research COPERT - COmputer Programme to estimate Emissions from Road Transport

Prof. Dr. Constantinos Antoniou (TUM) | Swiss Transport Research Conference 2021 | Keynote Presentation | 13.9.2021

Type

- ional updating algorithm and pling and statistical matching nrichment
- t model based on smoted y data
- tion (methods from OR) and r (Aimsun Ride)
- ission model (COPERT model)
- t model
- del

1. Trip generation

- 2. Trip distribution
- 3. Synthetic population generation
- 4. Disaggregate mode choice
- 5. Fleet management
- 6. Conventional agg. mode choice
- 7. Traffic assignment
- 8. Emission calculation
- 9. Car-ownership
- 10. Induced demand estimation

MOMENTUM GitHub repository

Some of the individual model codes are being made available in a GitHub repository Framework application: Tests in Madrid, Leuven, Regensburg and Thessaloniki, as part of EU H2020 project MOMENTUM

https://github.com/h2020-momentum/MOMENTUM

Prof. Dr. Constantinos Antoniou (TUM) | Swiss Transport Research Conference 2021 | Keynote Presentation | 13.9.2021

https://h2020-momentum.eu

Background and motivation Overall approach Case studies Disaggregate mode choice model 0 Modeling purchase intention/decision for cargo bikes 0

Shared mobility services towards Mobility as a Service (MaaS): What, who and when?

What, who and when?. Under review.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 815069

Narayanan, S., & Antoniou, C. (2021). Shared mobility services towards Mobility as a Service (MaaS):

Disaggregate choice model Methodology and data

Household survey collected by the Madrid regional government between February 2018 and June 2018

85,064 individuals from 58,490 households

Reduced sample of 25,463 individuals from 20,916 households (based on the traffic zones where shared systems are available)

Shared mobility services: <1%

Bike-sharing supply data from Nommon

Group	Variable	Estim.	S.E.
	$Age_{20-44}(B)$	1.11 (***)	0.04
	$Age_{20-44}(C)$	1.07 (***)	0.04
	$Age_{20-44}(R)$	0.80 (***)	0.04
	isMale(B)	1.44 (***)	0.03
	isMale(C)	1.27(***)	0.03
Who	hasUnivOrVocationalDegree(B & R)	0.92(***)	0.03
	hasUnivOrVocationalDegree(C)	1.48 (***)	0.04
	hasAnyLicense(R)	-0.19 (***)	0.04
	hasPTPass(B)	1.13(***)	0.04
	hasPTPass(C)	0.89(***)	0.04
	hasPTPass(R)	-0.27 (***)	0.03
	HHCarsNum(B)	-0.69 (***)	0.02
	HHCarsNum(C)	0.45(***)	0.02
	$TripDistance_{KM \leq 2}(B)$	1.45 (***)	0.06
	$\operatorname{TripDistance}_{KM>2\&\leq 5}(B)$	2.18(***)	0.06
	$\operatorname{TripDistancet}_{KM > 2And \leq 5}(\mathbf{R})$	1.47 (***)	0.04
	TripDistance _{$KM>2And\leq 5$} (C) &	1.77 (***)	0.03
	$TripDistance_{KM>5and \leq 15}(R)$		
When	TripDistance _{$KM>5And\leq 15$} (C)	2.02 (***)	0.05
	$TotalTravelTime_{Mins \leq 15}(C)$	2.04 (***)	0.06
	TotalTravelTime _{$Mins < 15$} (R) &	1.35 (***)	0.04

Prof. Dr. Consta

		hasPTPass(R)	-0.27 (***)	0.03
Chair of Transportatic Department of Civil, (Technical University c		HHCarsNum(B) HHCarsNum(C)	$-0.69 (***) \\ 0.45 (***)$	$0.02 \\ 0.02$
		TripDistance _{$KM \leq 2$} (B) TripDistance _{$KM \leq 2$} (B)	1.45 (***) 2.18 (***)	0.06
		TripDistancet $K_{M>2\&\leq 5}(B)$	1 47 (***)	0.00
		TripDistance $_{KM>2And\leq 5}(C)$ &	1.77 (***)	0.03
	When	TripDistance _{$KM>5and \leq 15$} (R) TripDistance _{$KM>5And \leq 15$} (C)	2.02 (***)	0.05
	when	$TotalTravelTime_{Mins \le 15}(C)$	2.04 (***)	0.06
		TotalTravelTime _{Mins<15} (R) &	1.35 (***)	0.04
		TotalTravelTime _{Mins>15And≤30} (C) TotalTravelTime _{Mins>15And≤30} (R) & TotalTravelTime _{Mins≤30} (B)	0.87 (***)	0.04
		SharedBikesInTheTrafficZone ¹ (B)	1.36 (***)	0.04
-		ASC(B)	-4.57 (***)	0.11
	_	ASC(C)	-5.85 (***)	0.11
		ASC(R)	-2.47 (***)	0.06
-	Summary st	atistics		
	McFadden R^2	-50210.21 -0.22		
	AIC	70482.42		
	BIC:	70545.21		
	Note:			
	 B: Bike- 	Sharing; C: Car-Sharing; R: ride-hailing; HH -	 HouseHold 	

Prof. Dr. Constantinos Antoniou (TUM) | Swiss Transport Research Conference 2021 | Keynote Presentation | 13.9.2021

-07

Prof. Dr. Constantinos Antoniou (TUM) | Swiss Transport Research Conference 2021 | Keynote Presentation | 13.9.2021

Common characteristics

Prof. Dr. Constantinos Antoniou (TUM) | Swiss Transport Research Conference 2021 | Keynote Presentation | 13.9.2021

Purchase intention and actual purchase of cargo cycles: Influencing factors and policy insights

Narayanan, S., Gruber, J., Liedtke, G., & Antoniou, C. (2021). Purchase intention and actual purchase of cargo cycles: Influencing factors and policy insights. Transportation Research Part A: Policy and Practice (Under 2nd review).

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 815069

Federal Ministry for the Environme for the Environment, Nature Conservation and Nuclear Safety

Cargo bikes purchase patterns

Previous research shows the influence of possession of cargo cycles on household carownership - Can cargo bikes substitute cars?

Can cargo cycles replace cars in commercial transport?

hasCargoBike (1)	-0.72	0.40	-1.78	The availability of a cargo bike in the household decreases the likelihood of				
hasCargoBike (2)	-2.19	0.48	-4.52	having a car (especially, in the case of two or more cars). This could be due to				
hasCargoBike (3)	-3.10	1.13	-2.74	 the distinctive features of cargo bikes, which turn them into effective car- substitutes for activities such as shopping, transport of mid-size/weight cargo, etc. 				
hasPTPass (1)	-0.85	0.22	-3.88	Possession of a PT pass negatively influence car-ownership.				
hasPTPass (2 & 3)	-1.22	0.25	-4.85					
isUnwillingToUseCS (1)	0.61	0.22	2.75	With respect to the attitude of citizens towards car-sharing services the				
isUnwillingToUseCS (2)	1.04	0.26	4.03	unwillingness to use car-sharing in the future, as stated by the survey participants, is shown to be related with higher car-ownership levels.				
isUnwillingToUseCS (3)	1.38	0.45	3.10					
CSSupplySubscription Interaction (1, 2 & 3)	-0.12	0.02	-5.27	When a car-sharing subscription is available, an increase in car-sharing supply results in lower probability to				
CSSupply (2)	-0.05	0.02	-2.28	own cars. Besides the interaction effect, there is generally a decrease in				
CSSupply (3)	-0.09	0.04	-1.96	increase in the number of car-sharing vehicles in the district.				
CommuteSpeed (1)	0.03	0.01	4.47	Higher commuting speeds are found to				
CommuteSpeed (2 & 3)	0.04	0.01	4.70	ownership levels. A model with coefficient for travel distance suggeste an increase in car-ownership for highe distances. These two indicate that existing alternatives to car-ownership are not competitive enough for longer distances.				
Intercept (2)	-1.00	0.51	-1.98	-				
Intercept (3)	-2.66	1.22	-2.18	-				

Methodology

Prof. Dr. Constantinos Antoniou (TUM) | Swiss Transport Research Conference 2021 | Keynote Presentation | 13.9.2021

Data

Longitudinal survey – (i) before, (ii) at the end, and (iii) 3-12 months after the end of the usage

400 organizations located in 187 different municipalities spread across (all the) 16 states of Germany

- Empirical data from Europe's largest cargo cycle testing scheme "Ich entlaste Städte" (Sept. 2017 and Dec. 2019)
- Tracking of cargo cycle use a smartphone project application, as well as through a GPS device attached to the cycles

Estimation results – EFA 1 (Drivers & **Barriers**)

Loadings

Possible to access areas that are close CCs are faster than CVs for my case CCs offer greater flexibility concern loading/unloading Travel time can be reliably planned Payload could be damaged during tra Using CCs in mixed traffic is dangered Riding CCs requires experience Cycling infrastructure is inadequate Implementation of CCs requires organ There is no established service netwo CCs could get stolen Employees enjoy using CCs CCs help to reach corporate environ CCs improve the health of the emplo CCs promote the image of the organi CCs are cheaper than CVs (purchase CCs have lower maintenance costs th

SSL

Proportion variance Cumulative Variance Cronbach alpha

Factor interpretation: Perception of

Note:

- and trucks); CCs: Cargo Cycles
- Loadings lower than 0.4 are not shown

	Factor 1	Factor 2	Factor 3	Factor 4
ed to CVs	0.66			
•	0.56			
ning parking or	0.80			
	0.59			
ansport		0.59		
ous		0.67		
		0.61		
		0.46		
nizational effort		0.60		
ork for CCs		0.50		
		0.47		
			0.63	
mental goals.			0.51	
oyees			0.73	
ization			0.54	
e cost)				0.76
nan CVs				0.48
	2.30	2.27	1.84	1.12
	0.14	0.13	0.11	0.07
	0.14	0.27	0.38	0.45
	0.72	0.71	0.65	-
	Operational	Risks &	Soft	Cost
	Benefits	Concerns	Benefits	benefits

• SSL: Sum of Square of Loadings; CVs: Conventional Vehicles (Diesel/petrol operated cars, vans

Loadings

Willing to invest into climate protection Policymakers should restrict CV traffic All stakeholders of society should fight ing

Economy is more important than envir CCs are a temporary phenomenon CCs can be used by all as an alternativ CCs will generally prevail in my indust Following technological progress is imp We use new technologies, even if they a We are pro innovation organization

SSLProportion variance Cumulative Variance Cronbach alpha

Factor interpretation: Interest towards

Note:

- and trucks); CCs: Cargo Cycles
- Loadings lower than 0.4 are not shown

Prof. Dr. Constantinos Antoniou (TUM) | Swiss Transport Research Conference 2021 | Keynote Presentation | 13.9.2021

Estimation results – EFA 2 (Attitudes)

	Factor 1	Factor 2
n	0.56	
;	0.73	
global warm-	0.57	
conment	-0.52	
	-0.58	
ve to the car	0.51	
try	0.40	
ortant		0.77
are expensive		0.75
		0.62
		1 = 0
	2.29	1.72
	0.23	0.17
	0.23	0.40
	0.69	0.72
	Sustainability Transformation in Transport (F-ST)	Technology and Innovation (F-TI)

• SSL: Sum of Square of Loadings; CVs: Conventional Vehicles (Diesel/petrol operated cars, vans

Loadings

Interest towards cargo cycles will increase if

Parking cost for CVs increases Fuel (diesel/petrol) becomes more expensive More access restrictions for CVs are implemente Purchase cost incentive is provided for CCs Purchase cost of CCs is reduced

SSLProportion variance Cumulative Variance Cronbach alpha

Factor interpretation: Importance of

Note:

- and trucks); CCs: Cargo Cycles
- Loadings lower than 0.4 are not shown

Prof. Dr. Constantinos Antoniou (TUM) | Swiss Transport Research Conference 2021 | Keynote Presentation | 13.9.2021

Estimation results – EFA 3 (Incentives)

	Factor 1	Factor 2
	0.80	
	0.83	
ed	0.83	
		0.79
		0.78
	2.05	1.31
	0.41	0.26
	0.41	0.67
	0.89	-
	Deterioration of Conditions for CVs (F-DC)	Purchase Cost of CCs (F-PC)

• SSL: Sum of Square of Loadings; CVs: Conventional Vehicles (Diesel/petrol operated cars, vans

Estimation results – Binary logit models

Purchase Intention				Actual Purchase Decision					
Variable	Coeff.	Estim.	S.E.	t-stat	Variable	Coeff.	Estim.	S.E.	t-stat
Intercept	$\beta_{\rm CON}$	-0.36	0.19	-1.85	Intercept	$\beta_{\rm CON}$	-1.81	0.31	-5.84
$catchmentArea \ (km^2)$	$eta_{ ext{CA}}$	-0.01	0.01	-1.84	$catchmentArea \ (km^2)$	$eta_{ ext{CA}}$	-0.01	0.01	-1.78
dailyMileage (km)	$oldsymbol{eta}_{\mathbf{M}}$	0.11	0.04	3.00	dailyMileage (km)	$oldsymbol{eta}_{\mathbf{M}}$	0.11	0.04	2.89
winterTesting (D)	$m{eta_{WT}}$	0.98	0.48	2.03	winterTesting (D)	$m{eta}_{\mathbf{WT}}$	0.74	0.45	1.64
operationalBenefits (L)	β_{OB}	0.42	0.11	3.98	operationalBenefits (L)	β_{OB}	0.29	0.12	2.39
softBenefits (L)	$eta_{ ext{SB}}$	0.37	0.10	3.55	softBenefits (L)	$eta_{ ext{SB}}$	0.36	0.11	3.13
operationalConcerns (L)	β_{OC}	-0.24	0.10	-2.32	costBenefits (L)	β_{CB}	0.23	0.12	1.89
technologyInnovation (L)	β_{TI}	0.20	0.10	1.94	deteriorationOfConditions (L)	β_{DC}	0.34	0.11	3.00
					carSubstitution (P)	β_{CS}	0.67	0.32	2.10
					lightVehicleSubstitution (P)	β_{LS}	1.79	1.09	1.64
					businessSector (D)	β_{BS}	0.84	0.24	3.45
Summary statistics					Summary statistics				
ρ^2 (McFadden): 0.10					ρ^2 (McFadden): 0.12				
AIC: 496.78					AIC: 448.20				
BIC: 528.40					BIC: 491.69				

Note:

- D: Dummy variable; L: Latent variable; P: Percentage in decimal format
- rounding off to two decimal places.
- For coefficient description and interpretation, please refer to Table 7
- Variables that are common to both purchase intention and actual purchase decision are made bold

Prof. Dr. Constantinos Antoniou (TUM) | Swiss Transport Research Conference 2021 | Keynote Presentation | 13.9.2021

• t-stat value displayed is the actual one, and may be different to the value obtained through Estim./S.E., due to

Insights – Purchase intention vs actual decision

A higher share of intent is observed (48.5%), compared to the actual purchase (32.0%)

Operational concerns -> purchase intention

Cost benefits and deterioration of conditions for conventional vehicles -> actual purchase decision.

Enthusiastic when they state their intention to purchase cargo cycle.

However, they perceive more disadvantages (e.g., catchment area of operations), reducing their interest to purchase cargo cycles.

There is a need to convert intention to actual purchase decision

Modeling Emerging Urban Mobility

Constantinos Antoniou Technical University of Munich Department of Civil, Geo and Environmental Eng. Chair of Transportation Systems Engineering

c.antoniou@tum.de http://tse.bgu.tum.de http://web.mit.edu/costas/www/publications.html

Swiss Transport Research Conference

Exchanging Ideas for Transport

