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Abstract

This research focuses on the formulation of a dynamic discrete-continuous choice model to
explain and predict individuals’ choices regarding car ownership, choice of fuel type and choice
of annual driving distance. Its main contribution is to integrate dynamic choice modeling for
multiple-car households and discrete-continuous choice modeling. This paper presents the
formulation of the model and its estimation on synthetic data.
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1 Introduction

Numerous governments have in the past implemented policies aiming at reducing green house
gas emissions and favoring the introduction of alternative fuel vehicles in the market. In
this context, quantitative models play an important role in understanding and predicting the
changes in demand in response to policy changes. The literature on car related choice models
is vast but there appears to be a consensus that car ownership (number of cars) and car usage
(distance driven with each car) are interrelated in household decisions and should be modeled
simultaneously. Moreover, a car is a highly durable good that can be used over a long period
of time. It hence is essential to account the forward-looking behavior of households. Dynamic
discrete choice models (DDCM) (Aguirregabiria and Mira, 2010, Rust, 1987) address that
feature by explicitely accounting for the expected discounted utility of future actions.

Modeling the discrete-continuous choice of car ownership and usage while accounting for
forward-looking households is essential to predict the evolution of car demand. However the
literature is lacking such methods.

In this research we develop a dynamic discrete-continuous choice model (DDCCM) that jointly
models car replacement decisions, choice of fuel type and usage of each car within a household.
The contribution of this research is to bring together the two advanced methodologies of discrete-
continuous choice modeling and DDCM, to jointly model household’s decisions regarding
ownership and usage.

The aim of this paper is to provide an operational estimation framework for a complex choice
problem. To validate the approach, the model is estimated on a synthetic data set. The latter is
generated based on the distributional properties of the population and car registers in Sweden
from 1999 to 2008. An earlier version of the model is presented in Glerum et al. (2013).

The paper is structured as follows. Section 2 presents the model framework and estimation
procedure of the DDCCM. Section 3 provides an example of application of the model on a
synthetic data set which is generated based on the statistical properties of the car fleet and
population of Sweden. Section 4 discusses potential extensions of the DDCCM. Section 5
concludes the paper by outlining the next steps of this research.





          

2 The dynamic discrete-continuous choice modeling

framework

In this section we present the DDCCM framework. We start by stating the main assumptions on
which the model is based. Then we describe the model structure, from the base components to
the specification of the full model. One of the key elements of the choice variable is the annual
mileage of each car and we explain in detail its specification. We end the section by discussing a
possible estimation method of the model.

2.1 Main assumptions

The DDCCM is formulated as a discrete-continuous choice model that is embedded into a
dynamic programming (DP) framework. We model the joint decision of vehicle transactions,
mileage and fuel type, based on the following assumptions.

Decisions are made at a household level. In addition, we assume that each household can have
at most two cars. Larger household fleets may also be considered but at the cost of increased
complexity. As pointed out by de Jong and Kitamura (2009), it may be relevant to consider
three car households for prediction even though the current share in several markets (typically
European markets) is low.

The choice of vehicle transaction and fuel type(s) is strategic, that is, we assume that households
take into account the future utility of the choice of these variables in their decision process.

We consider an infinite-horizon problem to account for the fact that households make long-term
decisions in terms of car transactions and fuel type. For example, individuals are assumed to
strategically choose the fuel type of the car they purchase according to their expectation of fuel
prices in the next years, or they decide to purchase one only car at present but already know that
they might add another car in the future years.

We make the simplifying assumption that when households decide how much they will drive
their car for the upcoming year, they only consider the utility of this choice for that particular
year, but that they do not account for whether the residual value of their car is affected by
usage. In other words, the choice of mileage(s) is myopic, that is, households do not take into
account the future utility of the choice of the current annual driving distance(s) in their decision
process.





          

Similarly to de Jong (1996) we make the reasonable assumption that the choice of mileage(s) is
conditional on the choice of the discrete decision variables (i.e. the transaction type and the fuel
type).

2.2 Definition of model components

The DP framework is based on four fundamental elements: the state space, the action space, the
transition function and the instantaneous utility. In this section, we describe each of these in
detail.

The state space S is constructed based on the following variables.

• The age yctn of car c of household n in year t. We set an upper bound for the age Ȳ ,
assuming that above this upper bound, changes in age do not affect the utility or transition
from one state to another. This implies that we have yctn ∈ Y = {0, 1, . . . , Ȳ}.

• The fuel type fctn of car c of household n in year t. A car c can have any fuel type
fctn ∈ F = {0, 1, . . . , F̄}, where 1, . . . , F̄ is the list of available fuel types in the market of
interest. The level 0 indicates the absence of a car.

As described in Section 2.1, each household can have at maximum two cars. Each state stn ∈ S

can hence be represented as

stn = (y1tn, f1tn, y2tn, f2tn), (1)

where the car denoted by the index 1 is the car which has been in a household n’s fleet for the
longest time, and the car denoted by the index 2 is the car which entered the household in a later
stage.

The action space A is constructed based on the following variables.

• The transaction htn in household n’s composition of the car fleet in year t. Every year, the
household can choose to increase, decrease or replace all or part of the fleet, or do nothing.
We additionally make the simplifying assumption that a household cannot purchase more
than one car per time period. The enumeration (see Figure 1) leads to nine possible
transactions. Therefore we have htn ∈ H = {1, . . . , 9}.

• The annual mileage m̃ctn ∈ R
+ of each car c chosen by household n.

• The fuel type f̃ctn ∈ F of each car c chosen by household n.





          

Chapter 10. Expectations about the future
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Figure 10.1: The nine possible transactions in a household fleet

The first term (10.2) consists of the number of possible states for two-car households. The

exponent 2 stands for the two cars in the household. The second term (10.3) is the number of

possible states for one-car housholds and the last term (10.4) stands for the absence of cars in

a household. It is important to keep the size as low as possible since we need to solve the DP

problem repeatedly when estimating the model parameters. To show that the definition of

the above state space stays computationally feasible, we provide a small numerical example.

Assuming that cars can be at maximum 9 years old and that the market is composed of gasoline

and diesel cars only, the size of the state space reaches the reasonable size of 463.

The action space A is constructed based on the following variables:

• The transaction htn in household n’s composition of the car fleet at year t . Every year,

the household can choose to increase, decrease or replace all or part of the fleet, or do

nothing. We additionally make the simplifying assumption that a household cannot

purchase more than one car per time period. The enumeration (see Figure 10.1) leads

to nine possible transactions. Therefore we have htn ∈ H = {1, . . . ,9}.

• The annual mileage m̃ctn ∈R+ of each car c chosen by household n.

• The fuel type f̃ctn ∈ F of each car c chosen by household n.
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Figure 1: The nine possible transactions in a household fleet

Each action atn ∈ A can be represented as

atn = (htn, m̃1tn, f̃1tn, m̃2tn, f̃2tn). (2)

It is worth noting that we have a completely discrete state space, while the action space is
discrete-continuous. From some particular states stn, not all actions are available. Hence,
we implicitly have atn ∈ A(stn) and the total number of discrete actions must be obtained by
enumerating all possible actions from each particular state.

Given that a household n is in a state stn and has chosen an action atn, the transition function

f (st+1,n|st, atn) is defined as the rule mapping stn and atn to the next state st+1,n.

Assuming that aD
tn = (htn, ˜f1tn, ˜f2tn) gathers the discrete components of an action atn and aC

tn =

(m̃1tn, m̃2tn) gathers the continuous components, the instantaneous utility is defined as:

u(stn, aC
tn, a

D
tn, xtn, θ) = v(stn, aC

tn, a
D
tn, xtn, εC(aC

tn), θ) + εD(aD
tn), (3)

where variable xtn contains socio-economic information relative to the household, θ is a vector
of parameters to be estimated. Expression v(stn, aC

tn, a
D
tn, xtn, εC(aC

tn), θ) is a deterministic term,
εD(aD

tn) is a random error term for the discrete actions and εC(aC
tn) captures the randomness

inherent to the continuous decision(s). Similarly as proposed by Rust (1987), the instantaneous
utility has an additive-separable form.





          

2.3 Value function

As in a DDCM case (see e.g. Cirillo and Xu, 2011, Aguirregabiria and Mira, 2010), the value
function of the DDCCM is defined as:

V(stn, xtn, θ) = max
atn∈A
{u(stn, atn, xtn, θ) + β

∑
st+1,n∈S

V̄(st+1,n, xt+1,n, θ) f (st+1,n|stn, atn)} (4)

= max
atn∈A
{v(stn, aC

tn, a
D
tn, xtn, εC(aC

tn), θ) + εD(aD
tn) + β

∑
st+1,n∈S

V̄(st+1,n, xt+1,n, θ) f (st+1,n|stn, atn)}

In order to obtain a version of the Bellman equation that does not depend on the random utility
error term εD(aD

tn), we consider the integrated value function V̄(stn, xtn, θ), given as follows.

V̄(stn, xtn, θ) =

∫
V(stn, xtn, θ)dGεD(εD(aD

tn)) (5)

where GεD is the CDF of εD.

In the case where all actions are discrete and the random terms εD(aD
tn) are i.i.d. extreme value,

it corresponds to the logsum (see e.g. Aguirregabiria and Mira, 2010). We aim at finding a
closed-form formula in the case where the choices are both discrete and continuous too. In fact,
a closed-form formula is possible in the special case where the choice of mileage of each car in
the household is assumed myopic. This implies that individuals choose how much they wish
to drive their car(s) every year, without accounting for the expected discounted utility of this
choice for the following years1.

Under the hypothesis of myopicity of the choice of annual driving distance(s), the integrated
value function is obtained as follows.

V̄(stn, xtn, θ) =

∫
V(stn, xtn, θ)dGε(εD(aD

tn))

=

∫
max
atn∈A
{u(stn, atn, xtn, θ, ε(atn)) + β

∑
st+1,n∈S

V̄(st+1,n, xt+1,n, θ) f (st+1,n |stn, atn)}dGε(εD(aD
tn))

=

∫
max

aD
tn

{max
aC

tn

{v(stn, aC
tn, a

D
tn, xtn, εC(aC

tn), θ)} + εD(aD
tn) + β

∑
st+1,n∈S

V̄(st+1,n, xt+1,n, θ) f (st+1,n |stn, atn)}dGε(εD(aD
tn))

= log
∑
aD

tn

exp{max
aC

tn

{v(stn, aC
tn, a

D
tn, xtn, εC(aC

tn), θ)} + β
∑

st+1,n∈S

V̄(st+1,n, xt+1,n, θ) f (st+1,n |stn, atn)} (6)

1This assumption was also made in the unpublished work by Anders Munk-Nielsen, University of Copenhagen.
We make this reasonable hypothesis here too.





          

Similarly as in the case of a DDCM, the value function is obtained by iterating on Equation (6).

2.4 The utility function in details

Since our aim is to model both acquisition and usage, we assume that expression
v(stn, aC

tn, a
D
tn, xtn, εC(aC

tn), θ) of Equation (6) is the sum of a utility linked with the acquisition the
vehicles vD

tn and a utility linked with the usage of the car vC
tn:

v(stn, aC
tn, a

D
tn, xtn, εC(aC

tn), θ) = vD
tn(stn, aD

tn, xtn, θ) + vC
tn(stn, aD

tn, a
C
tn, xtn, εC(aC

tn), θ) (7)

2.4.1 Optimal mileage for households owning two cars with different fuel types

By assumption, each household can have at maximum two cars. This implies that for two-car
households, the annual mileage of each car must be decided every year. Expression
v(stn, aC

tn, a
D
tn, xtn, εC(aC

tn), θ) of Equation (6) must hence be maximized with respect to the two
annual driving distances. Given the additive form of Equation (7), we only need to maximize
expression vC

tn(stn, aD
tn, a

C
tn, xtn, εC(aC

tn), θ) with respect to aC
tn.

However, if a household owns two cars, we observe from the data that one car is generally driven
more than the other one, i.e. one is used for long distances while the other is used for shorter
trips. We therefore make the assumption that the choice a household actually makes is not the
independent choices of how much each car will be driven, but rather the repartition of the total
mileage that it plans to drive across the two cars. Moreover, the use of both cars in the household
is highly dependent on fuel prices. Hence in the common case of a two-car household owning
both a car of a fuel f1 and a car of a fuel f2 (e.g. a diesel and a gasoline car), the repartition of
mileages might fluctuate depending on this economic feature.

In the abovementioned case, this motivates the use of a CES utility function for the choice of
mileages for cars of different fuel types within a same household, since it allows to evaluate how
likely households substitute the use of one car with the other, when the difference between the
fuel prices is changing.

Let us denote the mileages of the chosen cars with fuels f1 and f2 as m̃ f1tn and m̃ f2tn, respectively.
They are defined as follows.

m̃ f1tn := m̃1tn · I1 f1tn + m̃2tn · I2 f1tn (8)





          

and

m̃ f2tn := m̃1tn · I1 f2tn + m̃2tn · I2 f2tn, (9)

where Ic f1tn is equal to c if car c ∈ {1, 2} is a car driven with fuel f1 (e.g. gasoline), 0 otherwise,
and Ic f2tn = 1 − Ic f2tn is an indicator of whether the car c is driven with fuel f2 (e.g. diesel).

The deterministic utility of driving is given by the following CES function.

vC
tn(stn, aD

tn, a
C
tn, xtn, εC(aC

tn), θ) = (m̃ρ
f1tn + m̃ρ

f2tn)
1
ρ (10)

For simplicity, we assume that the formulation does not include any randomness related to the
choice of the continuous variable. Therefore we will omit the variable εC(aC

tn). Nevertheless the
framework could be extended to include randomness linked with the choice of annual driving
distance.

Parameter ρ with ρ ≤ 1 and ρ , 0, is related to the elasticity of substitution σ between the two
cars, given by:

σ =
1

1 − ρ
(11)

The choice of m̃ f1tn and m̃ f2tn must be made such that the budget constraint of the household
holds:

p f1tnm̃ f1tn + p f2tnm̃ f2tn = Inctn, (12)

where p f tn := cons f tn · pl f t is the cost per km of driving a car with fuel f̃ ∈ { f1, f2}, that is the
product of the car consumption cons f tn and the price of a liter of fuel pl f t for that car. Variable
Inctn is the share of the household’s annual income which is used for expenses related to car
fueling.

The optimal value of mileages for both cars is obtained by solving the following maximization
problem.

max
m̃ f1tn,m̃ f2tn

vC
tn, such that p f1tnm̃ f1tn + p f2tnm̃ f2tn = Inctn (13)

The above formulation of the CES utility fonction with the budget constraint has the following
advantages. First, the constraint enables us to solve the maximization problem according to
one dimension only. Such an approach has been considered by Zabalza (1983), in a context of





          

trade-off between leisure and income. Second, the use of a CES function is also convenient,
since the elasticity of substitution is directly obtained from the estimate of parameter ρ.

An analytical solution for m̃ f2tn can be obtained by solving the above optimization problem:

m̃∗f2tn =
Inctn · p

(1/(1−ρ))
f2tn

p(ρ/(ρ−1))
f1tn + p(ρ/(1−ρ))

f2tn

. (14)

We can then infer the value of the optimal mileage for the car with the other fuel type:

m̃∗f1tn =
Inctn

p f1tn
−

p f2tn

p f1tn
m̃∗f2tn

=
Inctn

p f1tn
−

p f1tn

p f1tn
·

Inctn · p
(1/(1−ρ))
f2tn

p(ρ/(ρ−1))
f1tn + p(ρ/(1−ρ))

f2tn

(15)

Consequently, we obtain the optimal value for the deterministic utility of the continuous actions:

vC∗
tn =


 Inctn

p f1tn
−

p f2tn

p f1tn
·

p(1/(ρ−1))
f2tn · Inctn

p(ρ/(ρ−1))
f1tn + p(ρ/(ρ−1))

f2tn


ρ

+

 Inctn · p
(1/(ρ−1))
f2tn

p(ρ/(ρ−1))
f1tn + p(ρ/(ρ−1))

f2tn


ρ

1
ρ

(16)

Then vC∗
tn can be inserted back in Equation (7). The Bellman equation (6) becomes:

V̄(stn, xtn, θ) = log
∑
aD

tn

exp{vD
tn(stn, aD

tn, xtn, θ) + vC∗
tn (stn, aD

tn, a
C∗
tn , xtn, θ)

+ β
∑

st+1,n∈S

V̄(st+1,n, xt+1,n, θ) f (st+1,n|stn, atn)}, (17)

where aC∗
t = (m̃∗1,t, m̃

∗
2,t). The integrated value function V̄ can then be computed by value

iteration. Let us note that the optimal mileage(s) for car 1 and car 2 are obtained by the following
mappings.

m̃∗1tn = m̃∗f1tn · I1 f1tn + m̃∗f2tn · I1 f2tn (18)





          

m̃∗2tn = m̃∗f1tn · I2 f1tn + m̃∗f2tn · I2 f2tn (19)

2.4.2 Optimal mileage for one-car households and households with two cars of the

same fuel

The computation of the optimal mileage(s) for one-car households and for households owning
two cars with the same fuel types is a result of the optimization problem (13) in two special
cases.

For one-car households with a car of fuel f1, the optimization problem reduces to the following
problem.

max
m̃ f1tn

vC
tn, such that p f1tnm̃ f1tn = Inctn (20)

The optimal mileage m̃∗1tn for the only car in the household is hence given by:

m̃∗1tn = m̃∗f1tn =
Inctn

p f1tn
(21)

Consequently the optimal utility of driving is given by:

vC∗
tn = m̃∗1tn (22)

For two-car households where both cars have the same fuel f1, we assume perfect substitutability
between the two cars, implying that ρ is equal to 1. This special case leads to infinitely many
solutions to the optimization problem (13). We hence select the solution where both cars are
driven the same distance, i.e. m̃1tn = m̃2tn = m̃ f1tn. The optimization problem hence becomes:

max
m̃ f1tn

vC
tn, such that 2 · p f1tnm̃ f1tn = Inctn (23)

Therefore the optimal mileages for each car m̃∗1tn and m̃∗2tn are given by:

m̃∗1tn = m̃∗2tn = m̃∗f1tn =
Inctn

2 · p f1tn
, (24)





          

where p f1tn is the cost per km of driving either car (under the assumption that both cars have the
same consumption).

The optimal utility of driving is hence given by:

vC∗
tn = 2 · m̃∗1tn (25)

In both cases presented in this section, vC∗
tn is consequently introduced in the Bellman equa-

tion (6).

2.5 Maximum likelihood estimation

The parameters of the DDCCM are obtained by maximizing the following likelihood function.

L(θ) =

N∏
n=1

Tn∏
t=1

P(aD
tn|stn, xtn, θ), (26)

where N is the total population size, Tn is the number of years household n is observed and
P(aD

tn|stn, xtn, θ) is the probability that household n chooses a particular discrete action aD
tn at time

t. This probability is obtained as follows.

P(aD
tn|stn, xtn, θ) =

vD
tn(stn, aD

tn, xtn, θ) + vC∗
tn (stn, aD

tn, a
C∗
tn , xtn, θ) + βV̄(s′t+1,n, xt+1,n, θ)∑

ãD
tn

{
vD

tn(stn, ãD
tn, xtn, θ) + vC∗

tn (stn, ãD
tn,

˜aC∗
tn , xtn, θ) + β

∑
st+1,n∈S V̄(st+1,n, xt+1,n, θ) f (st+1,n|stn, atn)

}
(27)

The simplest way to estimate this type of model is using the nested fixed point algorithm
proposed by Rust (1987) where the DP problem is solved for each iteration of the non-linear
optimization algorithm searching of the parameter space. Our DP problem is quite simple
because of the transition function being deterministic and we will adopt this approach here.

3 Application

In order to the validate the proposed modeling approach, we specify a DDCCM with arbitrary
parameters and estimate it on synthetic data. The synthetic data is generated based on the





          

distributional properties of the registers of vehicles and individuals in Sweden in years 1999 to
2008.

In this section, we describe simplifying assumptions relative to this example, the model specifi-
cation, the data set generation procedure and the estimation results.

3.1 Assumptions

In this example of application, we consider the two following fuel types fctn: gasoline or diesel.
Alternative-fuel vehicles are not included due to a too low frequency in the years of the data.

Moreover we assume a deterministic transition function, implying that st+1,n can be inferred
deterministically from st and at. The transition function f (st+1|st, at) hence reduces to the
following indicator.

f (st+1|st, at) =

 1 if st and at lead to state st+1

0 otherwise
(28)

This implies that Equation (6) can be simplified as follows due the deterministic formulation of
the transition.

V̄(stn, xtn, θ) = log
∑
aD

tn

exp{max
aC

tn

{v(stn, aC
tn, a

D
tn, xtn, θ)} + βV̄(s′t+1,n, xt+1,n, θ)}, (29)

where s′t+1,n is the state deterministically reached from stn if action atn is chosen. We note that
this simplification decreases considerably the computational time.

3.2 Model specification

As an example, we consider a simple specification of the deterministic (instantaneous) utility
relative to the choice of the discrete variables:

vD
tn(stn, aD

tn, xtn, θ) = τ(aD
tn) + βAge(aD

tn, stn) ·max(Age1tn,Age2tn), (30)

where Age1tn is the age of the first of the two cars in household n and Age2tn is the age of the
second car. Expressions τ(aD

tn) and βAge(aD
tn, stn) are parameters that would typically be estimated

on data. The transaction cost is meant to capture the unobserved costs (e.g. search costs) of
actions involving the acquisition of a new car, i.e. actions with transactions h2 (increase of 1),





          

h6 (dispose of 1st and change 2nd), h7 (dispose of 2nd and change 1st), h8 (change 1st) or h9

(change 2nd).

In order to illustrate the application of the DDCCM, we choose values for the parameters of
Equation (30). The signs and values are chosen in order to match a priori expectations. For
example, in a one-car household, the older the car is, the more likely the household is to dispose
of it. Hence, we give a positive sign to parameter βAge. The other chosen parameter values are
reported in Table 1. Parameter βAge depends on the size of the household, on whether the first or
the second car is the oldest and on the transaction type. The transaction cost τ varies according
to the different transactions types.

βAge τ

Transaction name Case 0 car 1 car 2 cars all households

h1: leave unchanged 0 0 0 0
h2: increase 1 0 0 - -3
h3: dispose 2 - - 0 0

h4: dispose 1st
1st car is oldest - 1.5 1.5 0
2nd car is oldest - - 0 0

h5: dispose 2nd
1st car is oldest - - 0 0
2nd car is oldest - - 1.5 0

h6: dispose 1st & change 2nd - - 0 -4
h7: dispose 2nd & change 1st - - 0 -4

h8: change 1st
1st car is oldest - 1.5 1.5 -4
2nd car is oldest - - 0 -4

h9: change 2nd
1st car is oldest - - 0 -4
2nd car is oldest - - 1.5 -4

Table 1: Parameters for the deterministic (instantaneous) utility relative to the discrete actions

Likewise, we choose values for the parameters of the deterministic (instantaneous) utility relative
to annual mileage. The elasticity of substitution ρ is set to 0.5. Moreover we fix the discount
factor in the Bellman equation (29) to 0.5.

3.3 Generation of the data set

We generate a synthetic data set of 5000 observations (with 500 observations for each year from
1999 to 2008). In order to provide a realistic example, the attributes of each observations are





          

generated such that they reproduce the distributional properties of the Swedish car fleet and
population. In Table 2 we report summary statistics of each variable in the real market.

The only attribute which we did not generate according to the data from the registers is the
number of cars per household. In order to obtain more variability in the data, we have assumed
an equal proportion of 0-car, 1-car and 2-car households (� 33.3%).

We note that the percentages of gasoline and diesel cars are hence computed relatively to the
population of cars with such fuel types only. Similarly, the proportion of households with 0 to 2
cars result from the normalization over the population of households that do not own more than
2 cars. To reduce the computational time of this estimation, we further assume that cars cannot
become older than 9 years. We note that the percentages of cars with 0, . . . , 9 years result from a
normalization over the population of cars no older than 9 years.

To build the synthetic data set, the age of each car and its fuel type are generated according
to the proportions in Table 2. The households’ incomes are generated according to a normal
distribution truncated at 0, with mean and standard deviation indicated in the table.

The choice probabilities relative to each household are predicted based on the postulated
parameters of Table 1. The choice indicator of each observation is generated following the
inverse transform method.

3.4 Estimation results

In this section, we present the results of the estimation of the model described in Section 3.2 on
the synthetic data. The estimation procedure is implemented in the C++ programming language
and is run on a 24-core computer with processors Intel(R) Xeon(R) CPU X5680 3.33 GHz. An
estimation lasts approximately 2 hour and 40 minutes.

To show that the model can consistently be estimated over several data sets, we generate 10
synthetic data sets based on the procedure described in Section 3.3. The model is estimated on
each data set.

The parameter estimates for each data set are reported in Table 3. As expected, for each run, the
parameters are not different from their true values, showing the consistency of the estimation
procedure. For the 10th data set, t-tests could not be computed since the algorithm was already
at the optimal point, according to the chosen stopping criterion (gradient norm < 0.01).

All parameters are significantly different from 0, showing that they significantly affect the choice.
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This is expected, since the choice variable is generated based on the true values of the postulated
parameters.

Since all parameters are not significantly different from their true values and significantly
different from 0, we can conclude that the proposed estimation framework leads to consistent
estimates.

4 Discussion

In this section, we discuss the limitations of the approach presented in this paper and potential
extensions of the presented framework.

First of all, we have integrated the choice of fuel type in the action space, while we did not
integrate the consumption(s) of the chosen car(s). In terms of specification, this implies that the
consumption for the chosen car is assumed to be constant, independently of the car type which is
chosen. This is a rather restrictive assumption, which could be relaxed in future research. Anders
Munk-Nielsen takes another approach which has the advantage of including fuel efficiently in
the state space. This yields a more complex model but is a less restrictive assumption than
ours.

In this paper, we have chosen to model choices regarding transaction type, fuel type and annual
driving distance. However, the framework could be extended to incorporate other acquisition
decisions such as purchasing a new versus a second-hand car, or selecting a company car, if this
option is possible. If decisions regarding ownership status (i.e. the acquisition of a company
versus a private car) are modeled, more research should then be performed in order to identify
the individuals who really have access to a company car or not.

It is computationally demanding to estimate the model using the nested fixed point algorithm. In
future research, we plan to adopt the approach by Aguirregabiria and Mira (2002) which reduces
the number of times the DP problem needs to be solved.

The present approach does not account for correlation between observations of the same house-
hold. In future research we plan to integrate such effects to improve the model realism.





          

5 Conclusion

This paper presents a methodology to model jointly car ownership, usage and choice of fuel
type. We have developed an operational estimation framework and shown its consistency by
estimating it on sythetic data. One of the main properties of the model is that it accounts for the
forward-looking behavior of individuals. This is crucial in the case of demand for durable goods
such as cars, since the purchase of a car is affected by the utility gained from that car for the
present and future years of ownership.

Though decisions involving discrete and continuous components are frequently occurring, this
aspect is scarcely addressed in a dynamic models with forward-looking agents. To address this
difficulty, we have formulated the problem of modeling ownership and usage decisions as a
dynamic discrete-continuous choice model.

The present research has the following important contributions. First, in order to obtain a
realistic dynamic model, we account for households’ decisions rather than individual ones, and
model transaction decisions for single- and two-car households. Second, we specify a CES
utility function to capture substitution patterns that occur when two-car households decide
on the annual mileages of the cars. Hence annual driving distances are not only treated as
continuous, but the dependence between each other is also accounted for. Third, we consider a
comprehensive choice variable, that accounts for decisions that are usually jointly made, such as
car ownership, choice of fuel type and annual mileage.

Future works involve the estimation of the DDCCM on the Swedish register data, in order
to assess its benefits over a simple static discrete choice model. The estimation on real data
will allow for interesting analyses. The latter include the assessment of the impact of policies
implemented during the years of the data on the dynamics of the Swedish car fleet and the
prediction of the effect of policy scenarios that have been defined in the planning process of the
Swedish government for the upcoming years.
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