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Abstract

In this paper, stability analysis of traffic control for two-region urban cities is treated. Two
Macroscopic Fundamental Diagrams (MFDs) system for two regions is defined. Under the as-
sumption of triangle MFDs, and two traffic demands: exogenous and endogenous demands, the
two-region MFDs system is modeled as a piecewise second-order system. Necessary and suffi-
cient conditions are derived for stable equilibrium accumulations in the undersaturated regimes
for both MFDs. Moreover, the traffic perimeter control problem for the two-region MFDs sys-
tem is formulated. Phase portraits and stability analysis are conducted, and new algorithm is
proposed to derive the boundaries of the stable and unstable regions. Based on these regions, a
state-feedback control strategy is derived. Few numerical examples are presented.
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1 Introduction

As traffic congestion increases in urban cities, an aggregate model approach that considers the
traffic dynamics of a large urban area is promising in alleviating congestion. A macroscopic
fundamental diagram (MFD) links space-mean flow, density, and speed of a large urban area.
Under the assumption that average trip length from all origins is constant with time, the MFD
links accumulation [veh] n(t) [veh], defined as the number of vehicles in the network at time
t, and exit flow [veh/sec] G(n) [veh/sec], defined as the rate vehicles reach their destinations,
Daganzo (2007).

Management and control of multi-region macroscopic fundamental diagrams (MFDs) system
can improve urban mobility, prevent overcrowding, and relieve congestion in cities.

The existing of a well-defined MFD for urban network was shown by microscopic simulation
of the San Francisco Business District, Geroliminis (2007), and experimentally revealed in
Yokohama (Japan), Geroliminis and Daganzo (2008). Analytical theories for urban MFD were
derived in Daganzo and Geroliminis (2008) and Helbing (2009), using a density-based and a
utilization-based approach, respectively.

Recent findings from empirical, Geroliminis and Sun (2011), and simulated data, Mazloumian
et al. (2010), show that the spatial variability of vehicle density is a key variable that affects the
shape, the scatter, and the existence of a well-defined MFD, e.g. when the link density variance
over all links in the network is low the scatter of an MFD is low. Moreover, the effect of link
lengths, incoming turns, and signal timing, i.e. cycle length, proportion of green light, and
offsets, are shown in Boyacı and Geroliminis (2011) based on the variational theory, Daganzo
(2005).

The concept of having a traffic network with a well-defined MFD can be utilized to control the
exit flow by managing and controlling the network accumulation. Moreover, if the network has
heterogeneous demand then one can partition the network to homogeneous regions with small
variances of link densities as each region will have a well-defined MFD. In Ji and Gerolimi-
nis (2011), a clustering algorithm for heterogeneous transportation networks to homogeneous
regions is presented.

The optimal control policy was derived for a single MFD system, while the optimality princi-
ples of control were only introduced for multi-region MFDs system in Daganzo (2007). The
control strategies aim to decrease inflows in regions with points in the decreased part of an
MFD, and manage the accumulation to maintain the flow in the city on its maximum.

Stability analysis and control synthesis of a nonlinear system are not a trivial task. Even for
a simple class of nonlinear system such as piecewise affine systems, and despite the fact that
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1 2

Figure 1: System of two MFDs with two state variables, e.g. periphery of the center (1) and
city center (2).

piecewise affine models are just a composition of linear dynamic systems, their stability proper-
ties are complex and cannot be easily deduced from those of the component linear subsystems,
and instead, numerical tests were proposed in Bemporad et al. (2000).

In this paper, the stability analysis for two-region MFDs system is treated, where the dynamics
equations are formulated as a piecewise second-order system. The MFDs are assumed to be in
triangle shapes, and the two regions have two traffic demands: one region has an exogenous
demand, i.e. all the trips generated have external destinations, e.g. the periphery of the city
center generates trips to the city center, while the other region has an endogenous demand, i.e.
all the trips have internal destinations, e.g. the city center attracts all trips. Furthermore, nec-
essary and sufficient conditions are derived for stable equilibrium point in the undersaturated
regimes for both MFDs. A new algorithm is proposed for computing the boundaries of stable
and unstable regions. Finally, a state-feedback control is derived where the criterion is to max-
imize the output of the system, i.e. the number of vehicles that complete their trips and reach
their destinations.

This paper is organized as follows: the dynamic equations and the control problem for two-
region MFDs system are formulated in Section 2, and also phase portraits for piecewise second-
order system is conducted. In Section 3 stability analysis and new algorithm for computing the
boundaries of the stable and unstable regions is proposed. The state-feedback control law is
presented in Section 4.

2 Two-region MFDs system

2.1 Dynamic equations and problem formulation

A partitioned traffic network is schematically shown in Fig. 1. There are two regions, i =

1, 2, where each region has a well-defined MFD, e.g. a city is partitioned to two regions: the
periphery of the center (1) and the city center (2). Let us denote ni(t) [veh] as the accumulation
or the total number of vehicles in i at time t, q1(t) [veh/sec] as the exogenous traffic flow
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demand generated in region 1 with destination to region 2 at time t, while q2(t) [veh/sec] as
the endogenous traffic flow demand generated in region 2 with destination to region 2 at time
t, Gi(ni(t)) [veh/sec] as the exit flow of the MFD in i at ni(t), and u(t) [-] as the perimeter
control, where 0 ≤ u(t) ≤ 1.

The dynamic equations of two-region MFDs system are

dn1(t)

dt
= q1(t)−G1(n1(t)) · u(t) (1)

dn2(t)

dt
= q2(t) +G1(n1(t)) · u(t)−G2(n2(t)) (2)

The criterion is to maximize the output of the traffic network, i.e. the number of vehicles that
complete their trips and reach their destinations. For the defined demand in our two-region
MFDs system, i.e. exogenous demand from region 1 to region 2 and endogenous demand
from region 2 to region 2, there is only one destination which is region 2, hence the maximum
number of vehicles reach their destination is defined as

max

∫ tf

0

G2(n2(t))dt (3)

where tf [sec] is the control time horizon.

For simplicity, it is assumed that the demands are constant with time, i.e. qi(t) = qi, i = 1, 2,
then the two-region MFDs control problem is formulated as follows: given an initial and end
state variables n1,0, n2,0 and n1,f , n2,f , respectively, and control time horizon [0, tf ], find the
optimal control policy that maximizes the number of vehicles reach their destination with the
dynamic equations (1) and (2), i.e.

J = max

∫ tf

0

G2(n2(t))dt (4)

subject to

dn1(t)

dt
= q1 −G1(n1(t)) · u(t) (5)

dn2(t)

dt
= q2 +G1(n1(t)) · u(t)−G2(n2(t)) (6)

n1(0) = n1,0 ; n2(0) = n2,0 (7)

n1(tf) = n1,f ; n2(tf) = n2,f (8)

umin ≤ u(t) ≤ umax (9)

where 0 < umin and umax < 1 are a priori given lower and upper bounds, respectively. Note
that the control time horizon tf is assumed to be large enough to reach end state point.
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Figure 2: Triangle macroscopic fundamental diagram.
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Figure 3: Four state regions in (n2, n1)-plane according to triangle MFDs.

The outputs of the two-region MFDs system are dependent on their shapes. In this paper, the
MFDs for both the two regions, e.g. the city center and the periphery of the city, are assumed to
be triangular, see Fig. 2, with capacity γi [veh/sec] at µi [veh], and jam density wi [veh]. There
are only two traffic regimes in the triangle shape: uncongested 0 ≤ ni(t) ≤ µi and congested
µi ≤ ni(t) ≤ wi. The triangle shape is defined as a piecewise affine function

Gi(ni(t)) =


γi
µi
· ni(t) if 0 ≤ ni(t) ≤ µi,

−γi
wi−µi · ni(t) +

γi·wi
wi−µi if µi ≤ ni(t) ≤ wi,

(10)

Substituting (10) into the dynamic equations (5) and (6), one gets a piecewise second-order
system of two state variables n1(t) and n2(t) with four state regions, see also Fig. 3:

• state region I, for 0 ≤ n1(t) ≤ µ1 and 0 ≤ n2(t) ≤ µ2,
• state region II, for 0 ≤ n1(t) ≤ µ1 and µ2 ≤ n2(t) ≤ w2,
• state region III, for µ1 ≤ n1(t) ≤ w1 and 0 ≤ n2(t) ≤ µ2,
• state region IV, for µ1 ≤ n1(t) ≤ w1 and µ2 ≤ n2(t) ≤ w2.
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2.2 Phase portraits for piecewise second-order system

In order to investigate the behavior of the two states two-region MFDs system, a phase portraits
is constructed by plotting trajectories from a large number of initial states spread all over the
(n2, n1)-plane. The qualitative behavior of the trajectories near equilibrium points can be also
determined via linearization with respect to these points, see Khalil (2002).

The equilibrium points, i.e. dni/dt = 0, i = 1, 2, in state regions I, II, III, and IV, according to
the corresponding equations after substituting (10) into (5) and (6):

(n2,eq, n1,eq)I =

(
(q1 + q2) · µ2

γ2
,
q1 · µ1

γ1 · u(t)

)
(11)

(n2,eq, n1,eq)II =

(
w2 −

(w2 − µ2) · (q1 + q2)

γ2
,
q1 · µ1

γ1 · u(t)

)
(12)

(n2,eq, n1,eq)III =

(
(q1 + q2) · µ2

γ2
, w1 −

q1 · (w1 − µ1)

γ1 · u(t)

)
(13)

(n2,eq, n1,eq)IV =

(
w2 −

(w2 − µ2) · (q1 + q2)

γ2
, w1 −

q1 · (w1 − µ1)

γ1 · u(t)

)
(14)

Proposition 1. The necessary and sufficient conditions for equilibrium points, i.e. dni/dt = 0,

i = 1, 2, in state regions I, II, III, and IV of the two-region MFDs system with triangle shapes

are:

q1 + q2 < γ2 (15)

q1 < γ1 · u(t) (16)

Proof. If dni/dt = 0 for i = 1, 2 hold, then they imply (11)–(14), and by definition the equilib-
rium points in state region I, II, III, and IV, i.e. (n2,eq, n1,eq)I , (n2,eq, n1,eq)II , (n2,eq, n1,eq)III ,
and (n2,eq, n1,eq)IV satisfy the lower and upper bounds of its region, i.e. 0 ≤ n1(t) ≤ µ1

and 0 ≤ n2(t) ≤ µ2 for state region I, 0 ≤ n1(t) ≤ µ1 and µ2 ≤ n2(t) ≤ w2 for state re-
gion II, µ1 ≤ n1(t) ≤ w1 and 0 ≤ n2(t) ≤ µ2 for state region III, and µ1 ≤ n1(t) ≤ w1 and
µ2 ≤ n2(t) ≤ w2 for state region IV. Substituting each equilibrium point in the lower and upper
bounds for its state region, one gets (15) and (16).

Clearly, if (15) and (16) hold, then each equilibrium point satisfies the lower and upper bounds
for its region, i.e. there exist equilibrium points (11), (12), (13), and (14) such that they belong
to state regions I, II, III, and IV, respectively.
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Let us rewrite (5) and (6), respectively, as

dn1(t)

dt
= f1(n1, n2) (17)

dn2(t)

dt
= f2(n1, n2) (18)

where f1(n1, n2) = q1 −G1(n1(t)) · u(t), f2(n1, n2) = q2 +G1(n1(t)) · u(t)−G2(n2(t)). Let
us assume that there exists at least one equilibrium point, denoted by (n1,eq, n2,eq) , for (17)
and (18), i.e. dni/dt = 0, i = 1, 2, then the Jacobian matrix of (17) and (18) at n1,eq, n2,eq

A =

[
∂f1
∂n1

∂f1
∂n2

∂f2
∂n1

∂f2
∂n2

]
n1=n1,eq,n2=n2,eq

(19)

Hence, under the assumption that (15) and (16) hold and for a given u(t), one can calculate the
Jacobian matrix at the equilibrium points in the state regions I, II, III, and IV according to

AI =

[
− γ1
µ1
· u(t) 0

γ1
µ1
· u(t) − γ2

µ2

]
AII =

[
− γ1
µ1
· u(t) 0

γ1
µ1
· u(t) γ2

w2−µ2

]

AIII =

[
γ1

w1−µ1 · u(t) 0

− γ1
w1−µ1 · u(t) −

γ2
µ2

]
AIV =

[
γ1

w1−µ1 · u(t) 0

− γ1
w1−µ1 · u(t)

γ2
w2−µ2

] (20)

The type of the equilibrium points is determined according to the eigenvalues of matrices AI ,
AII , AIII , and AIV in (20), see Khalil (2002). All these matrices are lower triangular matrices,
hence, the eigenvalues are the elements in the triangle. The equilibrium point in region I is a
stable equilibrium node since the two eigenvalues are negative, i.e. −γ1/µ1 · u(t) < 0 and
−γ2/µ2 < 0, the equilibrium points in region II and III are unstable saddle points since there
are one positive and one negative eigenvalues: for region II the eigenvalues are−γ1/µ1 ·u(t) <
0 and γ2/(w2 − µ2) > 0 while for region III the eigenvalues are γ1/(w1 − µ1) · u(t) > 0 and
−γ2/µ2 < 0, and the equilibrium point in region IV is an unstable node since both eigenvalues
are real positive, i.e. γ1/(w1−µ1) ·u(t) > 0 and γ2/(w2−µ2) > 0. The type of the equilibrium
points are shown schematically in Fig. 4.

The phase portraits is numerically constructed according to the following steps under the as-
sumption that the necessary and sufficient conditions (15) and (16) hold and that u(t) = u is
constant and a priori given during the construction of the phase portraits,

1. calculate all equilibrium points according to (11), (12), (13), and (14).
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Figure 4: The type of equilibrium points in state regions I, II, III, and IV.

2. select a bounding box in the (n2, n1)-plane as

0 ≤ n1(t) ≤ w1 (21)

0 ≤ n2(t) ≤ w2 (22)

3. calculate trajectories1 for selected initial points: inside and near the bounding box (21)
and (22), and near calculated equilibrium points in step 1.

Following these steps, the phase portraits is numerically conducted for example 1 as shown in
Fig. 5, where the green lines are the trajectories and the gray arrows are the direction of the
trajectories. The input data for example 1 are as follows: the traffic flow demand rates are
q1 = 0.194 [veh/sec], q2 = 0.069 [veh/sec], the perimeter control u(t) = umax = 0.8, the MFD
parameters are: γ1 = 0.5 [veh/sec], µ1 = 50 [veh], w1 = 200 [veh], γ2 = 0.583 [veh/sec],
µ2 = 150 [veh], w2 = 450 [veh].

3 Stability characterization of two states two-region system

The phase portrait conducted in the previous section shows that some of the trajectories reach
an equilibrium point while other trajectories reach one (at least) jam density, e.g. see Fig. 5.
Hence, before solving the two-region MFDs control problem, behavior and stability analysis of
the two-region system are conducted.

According to Section 2.2, if the necessary and sufficient conditions (15) and (16) hold, then one
stable equilibrium point exists in state region I. Stable trajectories are defined as trajectories
that approach a stable equilibrium point in state region I (n2,eq, n1,eq)I corresponding to u(t)

1Computer programs for solving ordinary differential equations are widely available. In this paper, Simulink
the simulation tool of MATLAB is used.
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Figure 5: Phase portraits for numerical example 1.

2. select a bounding box in the (n2, n1)-plane as

0 ≤ n1(t) ≤ w1 (21)

0 ≤ n2(t) ≤ w2 (22)

3. calculate trajectories1 for selected initial points: inside and near the bounding box (21) and (22), and near
calculated equilibrium points in step 1.

Following these steps, the phase portraits is numerically conducted for example 1 as shown in Fig. 5, where the
green lines are the trajectories and the gray arrows are the direction of the trajectories. The input data for example 1
are as follows: the traffic flow demand rates areq1 = 0.194 [veh/sec],q2 = 0.069 [veh/sec], the perimeter control
u(t) = umax = 0.8, the MFD parameters are:γ1 = 0.5 [veh/sec],µ1 = 50 [veh],w1 = 200 [veh],γ2 = 0.583 [veh/sec],
µ2 = 150 [veh],w2 = 450 [veh].

3. Stability characterization of two states two-region system

The phase portrait conducted in the previous section shows that some of the trajectories reach an equilibrium point
while other trajectories reach one (at least) jam density, e.g. see Fig. 5. Hence, before solving the two-region MFDs
control problem, behavior and stability analysis of the two-region system are conducted.

According to Section 2.2, if the necessary and sufficient conditions (15) and (16) hold, then one stable equilibrium
point exists in state region I.Stable trajectoriesare defined as trajectories that approach a stable equilibrium point in
state region I (n2,eq, n1,eq)I corresponding tou(t) ast → tf , see (11), whileunstable trajectoriesapproach (at least) one
jam density, i.e.n1(tf ) = w1 or/andn2(tf ) = w2, and there exists no controlu(t) that can bring trajectories to stable
equilibrium point under the prevailing traffic demand. Moreover, astable regionis defined as the set of all points that
have stable trajectories, while all other points with unstable trajectories define anunstable region.

A region of attractionfor constant controlu(t) = u, denotes byRAu, is defined as the set of all points (n2, n1) that
their trajectories are stable with applied controlu. Finding the region of attraction of a nonlinear system is a significant
research topic that has been studied extensively, e.g. Chiang and Thorp (1989); Mhaskar et al. (2006); Tan and Packard
(2008); Topcu and Packard (2009). Since computing the exactRA is hard, researchers have focused on finding

1Computer programs for solving ordinary differential equations are widely available. In this paper, Simulink the simulation tool of MATLAB
is used.
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as t→ tf , see (11), while unstable trajectories approach (at least) one jam density, i.e. n1(tf) =

w1 or/and n2(tf) = w2, and there exists no control u(t) that can bring trajectories to stable
equilibrium point under the prevailing traffic demand. Moreover, a stable region is defined as
the set of all points that have stable trajectories, while all other points with unstable trajectories
define an unstable region.

A region of attraction for constant control u(t) = u, denotes by RAu, is defined as the set of
all points (n2, n1) that their trajectories are stable with applied control u. Finding the region of
attraction of a nonlinear system is a significant research topic that has been studied extensively,
e.g. Chiang and Thorp (1989); Mhaskar et al. (2006); Tan and Packard (2008); Topcu and
Packard (2009). Since computing the exact RA is hard, researchers have focused on finding
Lyapunov functions whose sublevel sets provide invariant subsets of the RA. There is no gen-
eral Lyapunov function that may apply for nonlinear systems, therefore, different methods were
presented for specific class of nonlinear systems, e.g. piecewise quadratic Lyapunov functions
and linear matrix inequalities approach have been proposed in Hassibi and Boyd (1998) and
Johansson and Rantzer (1998) for piecewise affine systems. It is a hard task to find a Lyapunov
function for bilinear systems, which is a class of nonlinear control systems where the control u
is act as an additive and multiplicative coefficient of state variables, Elliott (2009). Moreover,
it was concluded in Gutman (1981) that there exists no general method to design stabilizing
controllers for bilinear system. The two states two-region system is even more sophisticated
than bilinear system since it is a piecewise bilinear system, however, a new algorithm is pro-
posed to calculate the region of attraction according to analytical and numerical computations.
RAs are used to characterize the stable and unstable regions in this section, and to design a
state-feedback control in Section 4.
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Figure 6: Region of attraction corresponding to constant control u: cases a, b, and c

Lyapunov functions whose sublevel sets provide invariant subsets of the RA. There is no general Lyapunov function
that may apply for nonlinear systems, therefore, different methods were presented for specific class of nonlinear
systems, e.g. piecewise quadratic Lyapunov functions and linear matrix inequalities approach have been proposed in
Hassibi and Boyd (1998) and Johansson and Rantzer (1998) forpiecewise affine systems. It is a hard task to find a
Lyapunov function forbilinear systems, which is a class of nonlinear control systems where the control u is act as
an additive and multiplicative coefficient of state variables, Elliott (2009). Moreover, it was concluded in Gutman
(1981) that there exists no general method to design stabilizing controllers for bilinear system. The two states two-
region system is even more sophisticated than bilinear system since it is apiecewise bilinear system, however, a
new algorithm is proposed to calculate the region of attraction according to analytical and numerical computations.
RAs are used to characterize the stable and unstable regionsin this section, and to design a state-feedback control in
Section 4.

3.1. Region of attraction boundary

Since the two-region MFDs system is piecewise system, and has an equilibrium point in each piece, three different
cases are distinguished. In case a, the equilibrium points in state regions III and IV are “far” enough from each other
such that trajectories do not interfere each other, therefore, the type of equilibrium points and the qualitative behavior
near them are maintained as two isolated points in the state space, see Fig. 4. In case b and c, the two equilibrium
points in region II and III affect each other, hence, the behavior of trajectories is different than that in case a. The
region of attraction boundaries for constant control for cases a, b, and c are schematically shown in Fig. 6.

Under the assumption thatu(t) is constant during the control time horizon, i.e.u(t) = u for [0, t f ], the following
steps are presented for computing the RA boundary curve, seeFig. 6:

1. calculate all equilibrium points according to (11), (12), (13), and (14).

2. start from the saddle equilibrium point in state region II, and calculate the corresponding eigenvector of the
negative eigenvalue of the linearized system in that region, i.e. λ1 = −γ1/µ1 · u < 0, according to

(n2, n1) =
(
1,

−γ2 · µ1

γ1 · u · (w2 − µ2)
− 1
)

(23)

therefore, the slope of lineAB is −γ2 · µ1/(γ1 · u · (w2 − µ2)) − 1.

3. given the slope of the lineAB and the saddle equilibrium point (n2,eq, n1,eq)II , calculate pointsA = (n2,A, n1,A)
andB = (n2,B, n1,B), and draw lineAB, where pointA is the intersection between lineAB and linen1(t) = 0 or
line n2(t) = w2, and pointB is the intersection between lineABand linen1(t) = µ1 or linen2(t) = µ2, depending
on the value of the slope.
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3.1 Region of attraction boundary

Since the two-region MFDs system is piecewise system, and has an equilibrium point in each
piece, three different cases are distinguished. In case a, the equilibrium points in state re-
gions III and IV are “far" enough from each other such that trajectories do not interfere each
other, therefore, the type of equilibrium points and the qualitative behavior near them are main-
tained as two isolated points in the state space, see Fig. 4. In case b and c, the two equilibrium
points in region II and III affect each other, hence, the behavior of trajectories is different than
that in case a. The region of attraction boundaries for constant control for cases a, b, and c are
schematically shown in Fig. 6.

Under the assumption that u(t) is constant during the control time horizon, i.e. u(t) = u for
[0, tf ], the following steps are presented for computing the RA boundary curve, see Fig. 6:

1. calculate all equilibrium points according to (11), (12), (13), and (14).

2. start from the saddle equilibrium point in state region II, and calculate the corresponding
eigenvector of the negative eigenvalue of the linearized system in that region, i.e. λ1 =

−γ1/µ1 · u < 0, according to

(n2, n1) =

(
1,

−γ2 · µ1

γ1 · u · (w2 − µ2)
− 1

)
(23)

therefore, the slope of line AB is −γ2 · µ1/(γ1 · u · (w2 − µ2))− 1.

3. given the slope of the line AB and the saddle equilibrium point (n2,eq, n1,eq)II , calculate
points A = (n2,A, n1,A) and B = (n2,B, n1,B), and draw line AB, where point A is the
intersection between line AB and line n1(t) = 0 or line n2(t) = w2, and point B is the
intersection between line AB and line n1(t) = µ1 or line n2(t) = µ2, depending on the
value of the slope.
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Figure 7: Numerical example 1 demonstrates case a: the trajectories are in green and the red curve is the boundary.

4. if n2,B > µ2, then calculate trajectory from pointB to the unstable equilibrium point (n2,eq, n1,eq)IV in reverse
direction according to (A.3), (A.4), and (A.5) in Appendix A.1, with initial state pointB andt = 0→ ∞. If the
trajectory B-(n2,eq, n1,eq)IV does not enter the state region III, i.e. does not intersect the linen2(t) = µ2, then it is
case a, otherwise it is case b:

• case a: draw a horizontal line stars from the unstable equilibrium point (n2,eq, n1,eq)IV moves through the
saddle point (n2,eq, n1,eq)III , and ends atn2(t) = 0. The line is horizontal according to the corresponding
eigenvector of the negative eigenvalue for the saddle equilibrium point in state region III.

• case b: calculate trajectories from pointsB to C andC to D in reverse way, according to Appendix A.2.

5. if n2,B = µ2 then it is case c. Calculate trajectory from pointsB to C andC to D in reverse way according to
Appendix A.3.

Note that the RA boundary curve is combined from several trajectories some of them are calculated numerically, while
other trajectories are calculated analytically, see Appendix A.1, Appendix A.2, and Appendix A.3.

The region of attraction boundaries for cases a, b, and c are demonstrated by examples 1, 2, and 3, as shown in
Fig. 7, 8, and 9, respectively, where the red curve is the RA boundary. The input data for example 1 are given in
Section 2.2. The input data for example 2 are as follows: the traffic flow demand rates areq1 = 0.194 [veh/sec],q2 =

0.319 [veh/sec], the perimeter controlu(t) = umax = 0.8, the MFD parameters are:γ1 = 0.5 [veh/sec],µ1 = 50 [veh],
w1 = 200 [veh],γ2 = 0.583 [veh/sec],µ2 = 150 [veh],w2 = 450 [veh]. The input data for example 3 are as follows:
the traffic flow demand rates areq1 = 0.194 [veh/sec],q2 = 0.278 [veh/sec], the perimeter controlu(t) = umax = 1,
the MFD parameters are:γ1 = 0.5 [veh/sec],µ1 = 50 [veh], w1 = 200 [veh],γ2 = 0.5 [veh/sec],µ2 = 150 [veh],
w2 = 450 [veh].

Until this section, the RA boundaries for all numerical examples 1, 2, and 3 were calculated for constant control
u(t) = umax (trajectories drawn by green color). Clearly, different RA boundaries and trajectories are obtained by
applyingu(t) = umin, e.g. the phase portraits with the RA for example 1 corresponding to u(t) = umin = 0.45 and
u(t) = umax are shown in Fig. 10, where trajectories are drawn by blue color and the boundary by cyan color forumin.

3.2. Stability characterization

In the previous section, an algorithm is proposed to computetheRAu boundary for a constant controlu. In this
section, the algorithm for computing the RA is used to characterize the stable and unstable regions.

Recall that stable region is defined as the set of all points that have (at least) one trajectory approaches a stable
equilibrium point corresponding to controlu(t). If u(t) is assumed to be constant for the whole control period, then
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Figure 7: Numerical example 1 demonstrates case a: the trajectories are in green and the red
curve is the boundary.

4. if n2,B > µ2, then calculate trajectory from point B to the unstable equilibrium point
(n2,eq, n1,eq)IV in reverse direction according to (47), (48), and (49) in A.1, with initial
state point B and t = 0→∞. If the trajectory B-(n2,eq, n1,eq)IV does not enter the state
region III, i.e. does not intersect the line n2(t) = µ2, then it is case a, otherwise it is
case b:

• case a: draw a horizontal line stars from the unstable equilibrium point
(n2,eq, n1,eq)IV moves through the saddle point (n2,eq, n1,eq)III , and ends at n2(t) =

0. The line is horizontal according to the corresponding eigenvector of the negative
eigenvalue for the saddle equilibrium point in state region III.
• case b: calculate trajectories from pointsB to C and C toD in reverse way, accord-

ing to A.2.

5. if n2,B = µ2 then it is case c. Calculate trajectory from points B to C and C to D in
reverse way according to A.3.

Note that the RA boundary curve is combined from several trajectories some of them are cal-
culated numerically, while other trajectories are calculated analytically, see A.1, A.2, and A.3.

The region of attraction boundaries for cases a, b, and c are demonstrated by examples 1, 2,
and 3, as shown in Fig. 7, 8, and 9, respectively, where the red curve is the RA boundary. The
input data for example 1 are given in Section 2.2. The input data for example 2 are as follows:
the traffic flow demand rates are q1 = 0.194 [veh/sec], q2 = 0.319 [veh/sec], the perimeter
control u(t) = umax = 0.8, the MFD parameters are: γ1 = 0.5 [veh/sec], µ1 = 50 [veh], w1 =

200 [veh], γ2 = 0.583 [veh/sec], µ2 = 150 [veh], w2 = 450 [veh]. The input data for example 3
are as follows: the traffic flow demand rates are q1 = 0.194 [veh/sec], q2 = 0.278 [veh/sec],
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Figure 8: Numerical example 2 demonstrates case b: the trajectories are in green and the red curve is the boundary.
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Figure 9: Numerical example 3 demonstrates case c: the trajectories are in green and the red curve is the boundary.
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Figure 8: Numerical example 2 demonstrates case b: the trajectories are in green and the red
curve is the boundary.
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Figure 8: Numerical example 2 demonstrates case b: the trajectories are in green and the red curve is the boundary.
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Figure 9: Numerical example 3 demonstrates case c: the trajectories are in green and the red curve is the boundary.
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Figure 9: Numerical example 3 demonstrates case c: the trajectories are in green and the red
curve is the boundary.

the perimeter control u(t) = umax = 1, the MFD parameters are: γ1 = 0.5 [veh/sec], µ1 =

50 [veh], w1 = 200 [veh], γ2 = 0.5 [veh/sec], µ2 = 150 [veh], w2 = 450 [veh].

Until this section, the RA boundaries for all numerical examples 1, 2, and 3 were calculated
for constant control u(t) = umax (trajectories drawn by green color). Clearly, different RA
boundaries and trajectories are obtained by applying u(t) = umin, e.g. the phase portraits with
the RA for example 1 corresponding to u(t) = umin = 0.45 and u(t) = umax are shown in
Fig. 10, where trajectories are drawn by blue color and the boundary by cyan color for umin.
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Figure 10: Numerical example 1 corresponding tou(t) = umin (trajectories in blue and RA boundary in cyan) andu(t) = umax (trajectories in green
and RA boundary in red).

the stable region is the set of all possible RAs. However, since the control may change over the control period, the
stable region is wider, i.e. points outside the set of all RAsmay also be stable if there exits (at least) one trajectory
that enters the set of all RAs region.

In principle, in order to characterize the stable region, one has to calculate RAs corresponding to allu satisfies
(9) and explore the state space for trajectories that enter these RAs. However, qualitative behavior and numerical
examples, e.g. Fig.11, show that computations of RAumin and a few trajectories are enough to characterize the stable
region boundary. The quantitative behavior of RAs for a widerange ofu are shown in Fig.11 for numerical example 4
where its input data are the same of example 1 exceptq2(t) = 0.347 [veh/sec] instead ofq2(t) = 0.07 [veh/sec].

From the qualitative behavior of the RAs shown in Fig. 6, two stable regions are distinguished according to RAumin,
see also Fig. 12:

• Case i: RAumin belong to case a,

• Case ii: RAumin belongs to case b or case c.

The solid curve in Fig. 12 is a boundary that splits (n2, n1)-plane into stable and unstable regions, i.e. stability
characterization needs RAumin, and one numerical trajectory which can be found numerically: for cases i reverse
trajectory calculation withumin, denoted by ˜umin, starts from unstable equilibrium point in state region IV according to
umax and for case ii trajectory starts from the horizontal axes with umax and tangent with RAumin, see Fig. 12. Numerical
example 4 with different upper and lower boundsumax, umin demonstrates cases i and ii as shown in Fig. 13 and Fig. 14,
respectively.

In Section 3.1, the RA boundary was analyzed for dynamics equations with constant demandq1 andq2, see (5)
and (6). However, the same analysis can be also used for time varying demandq1(t) andq2(t), see (1) and (2), since
for these dynamics equations (1) and (2) no bifurcation happens, i.e. the difference in behavior around equilibrium
points is quantitative but not qualitative when demand varies, it means that there will be one stable and unstable
equilibrium points in state regions I and IV, respectively,two saddle equilibrium points in regions II and III, and only
the positions of the equilibria points varies within each region. The reason that no bifurcation happens with time
varying demand is that each equilibrium point is a function of q1(t) andq2(t), i.e. n1,eq(q1(t), q2(t)), n2,eq(q1(t), q2(t)).
Then,n1,eq(q1(t), q2(t)), n2,eq(q1(t), q2(t)) is a smooth function ofq1(t), q2(t), as long as the Jacobian linearization
around equilibrium points does not have a zero eigenvalue, see Izhikevich (2007); Khalil (2002), and this holds in our
case since the demand is an affine parameter of the system.

In example 1, the exogenous demand from the periphery of the center to the city center isq1 = 0.194 [veh/sec],
while the endogenous demand from and to the city center isq2 = 0.069 [veh/sec]. Examples 2 and 3 show the effect
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Figure 10: Numerical example 1 corresponding to u(t) = umin (trajectories in blue and RA
boundary in cyan) and u(t) = umax (trajectories in green and RA boundary in red).

3.2 Stability characterization

In the previous section, an algorithm is proposed to compute the RAu boundary for a constant
control u. In this section, the algorithm for computing the RA is used to characterize the stable
and unstable regions.

Recall that stable region is defined as the set of all points that have (at least) one trajectory
approaches a stable equilibrium point corresponding to control u(t). If u(t) is assumed to be
constant for the whole control period, then the stable region is the set of all possible RAs.
However, since the control may change over the control period, the stable region is wider, i.e.
points outside the set of all RAs may also be stable if there exits (at least) one trajectory that
enters the set of all RAs region.

In principle, in order to characterize the stable region, one has to calculate RAs corresponding
to all u satisfies (9) and explore the state space for trajectories that enter these RAs. However,
qualitative behavior and numerical examples, e.g. Fig.11, show that computations of RAumin

and a few trajectories are enough to characterize the stable region boundary. The quantitative
behavior of RAs for a wide range of u are shown in Fig.11 for numerical example 4 where
its input data are the same of example 1 except q2(t) = 0.347 [veh/sec] instead of q2(t) =

0.07 [veh/sec].

From the qualitative behavior of the RAs shown in Fig. 6, two stable regions are distinguished
according to RAumin

, see also Fig. 12:

• Case i: RAumin
belong to case a,

• Case ii: RAumin
belongs to case b or case c.
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Figure 11: Example 4: RAs for wide range of u
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Figure 12: Stable and unstable regions cases i and ii
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Figure 13: Example 4 withumax = 0.75 andumin = 0.5 demonstrates stable and unstable regions for case i
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Figure 13: Example 4 withumax = 0.75 andumin = 0.5 demonstrates stable and unstable regions for case i
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Figure 12: Stable and unstable regions cases i and ii

The solid curve in Fig. 12 is a boundary that splits (n2, n1)-plane into stable and unstable
regions, i.e. stability characterization needs RAumin

, and one numerical trajectory which can be
found numerically: for cases i reverse trajectory calculation with umin, denoted by ũmin, starts
from unstable equilibrium point in state region IV according to umax and for case ii trajectory
starts from the horizontal axes with umax and tangent with RAumin

, see Fig. 12. Numerical
example 4 with different upper and lower bounds umax, umin demonstrates cases i and ii as
shown in Fig. 13 and Fig. 14, respectively.

In Section 3.1, the RA boundary was analyzed for dynamics equations with constant demand q1
and q2, see (5) and (6). However, the same analysis can be also used for time varying demand
q1(t) and q2(t), see (1) and (2), since for these dynamics equations (1) and (2) no bifurcation
happens, i.e. the difference in behavior around equilibrium points is quantitative but not qual-
itative when demand varies, it means that there will be one stable and unstable equilibrium
points in state regions I and IV, respectively, two saddle equilibrium points in regions II and III,
and only the positions of the equilibria points varies within each region. The reason that no bi-
furcation happens with time varying demand is that each equilibrium point is a function of q1(t)
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Figure 13: Example 4 withumax = 0.75 andumin = 0.5 demonstrates stable and unstable regions for case i
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Figure 13: Example 4 with umax = 0.75 and umin = 0.5 demonstrates stable and unstable
regions for case i
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Figure 14: Example 4 withumax = 0.75 andumin = 0.6 demonstrates stable and unstable regions for case ii
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Figure 15: Numerical example 2: stable regions for differentq2 demand.

of different demandq2 andq1, respectively. In example 2, the effect of different endogenous demandq2 = 0.069,
0.125, 0.181, 0.236 ,0.292, 0.347 [veh/sec] withq1 = 0.194 [veh/sec],umax = 0.8 andumin = 0.45 on the stable and
unstable regions is shown in Fig. 15, while in example 3, the effect of different exogenous demandq1 = 0.083, 0.111,
0.138, 0.166 , 0.194, 0.222 [veh/sec] withq2 = 0.181 [veh/sec],umax = 0.8 andumin = 0.45 on the stable and unstable
regions is shown in Fig. 16. Results in Fig. 15 and Fig. 16 are as expected. The stable region becomes smaller as
demand increases, since increasing demandq2 or/and demandq1 increases the destination to region 2 which becomes
more congested, then the system of the two regions will intend to be jammed, i.e. larger unstable region and smaller
stable region.

4. State-feedback control for two-region MFDs

In this section, the stabilizing control solution is derived for the two-region MFDs control problem (4)–(9). It will
be shown in Section 4.1 that the two-region control problem is a feasibility (or stabilizing) problem, i.e. any feasible
sequence of perimeter control is an optimal solution, and all feasible solutions have the same value of the criterion
for the same initial and end states. However, when the control problem has no feasible solution for the initial state,
then the control cannot stabilize the two-region MFDs and the stable equilibrium end point is not reachable, hence, an
optimal solution is derived for a relaxed problem as shown inSection 4.2.
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Figure 14: Example 4 with umax = 0.75 and umin = 0.6 demonstrates stable and unstable
regions for case ii

and q2(t), i.e. n1,eq(q1(t), q2(t)), n2,eq(q1(t), q2(t)). Then, n1,eq(q1(t), q2(t)), n2,eq(q1(t), q2(t))

is a smooth function of q1(t), q2(t), as long as the Jacobian linearization around equilibrium
points does not have a zero eigenvalue, see Izhikevich (2007); Khalil (2002), and this holds in
our case since the demand is an affine parameter of the system.

In example 1, the exogenous demand from the periphery of the center to the city cen-
ter is q1 = 0.194 [veh/sec], while the endogenous demand from and to the city center is
q2 = 0.069 [veh/sec]. Examples 2 and 3 show the effect of different demand q2 and q1, respec-
tively. In example 2, the effect of different endogenous demand q2 = 0.069, 0.125, 0.181, 0.236
,0.292, 0.347 [veh/sec] with q1 = 0.194 [veh/sec], umax = 0.8 and umin = 0.45 on the stable
and unstable regions is shown in Fig. 15, while in example 3, the effect of different exogenous
demand q1 = 0.083, 0.111, 0.138, 0.166 , 0.194, 0.222 [veh/sec] with q2 = 0.181 [veh/sec],
umax = 0.8 and umin = 0.45 on the stable and unstable regions is shown in Fig. 16. Results in
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Figure 14: Example 4 withumax = 0.75 andumin = 0.6 demonstrates stable and unstable regions for case ii
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Figure 15: Numerical example 2: stable regions for differentq2 demand.

of different demandq2 andq1, respectively. In example 2, the effect of different endogenous demandq2 = 0.069,
0.125, 0.181, 0.236 ,0.292, 0.347 [veh/sec] withq1 = 0.194 [veh/sec],umax = 0.8 andumin = 0.45 on the stable and
unstable regions is shown in Fig. 15, while in example 3, the effect of different exogenous demandq1 = 0.083, 0.111,
0.138, 0.166 , 0.194, 0.222 [veh/sec] withq2 = 0.181 [veh/sec],umax = 0.8 andumin = 0.45 on the stable and unstable
regions is shown in Fig. 16. Results in Fig. 15 and Fig. 16 are as expected. The stable region becomes smaller as
demand increases, since increasing demandq2 or/and demandq1 increases the destination to region 2 which becomes
more congested, then the system of the two regions will intend to be jammed, i.e. larger unstable region and smaller
stable region.

4. State-feedback control for two-region MFDs

In this section, the stabilizing control solution is derived for the two-region MFDs control problem (4)–(9). It will
be shown in Section 4.1 that the two-region control problem is a feasibility (or stabilizing) problem, i.e. any feasible
sequence of perimeter control is an optimal solution, and all feasible solutions have the same value of the criterion
for the same initial and end states. However, when the control problem has no feasible solution for the initial state,
then the control cannot stabilize the two-region MFDs and the stable equilibrium end point is not reachable, hence, an
optimal solution is derived for a relaxed problem as shown inSection 4.2.
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Figure 16: Numerical example 3: stable regions for differentq1 demand.

4.1. Stabilizing control for feasibility control problem

First, let us assume that the two-region MFDs control problem has a feasible solution for the given initial state,
i.e. one (at least) feasible solutionu(t) exists for 0≤ t ≤ t f , such that satisfies (9) and can bring initial states (7) to end
states (8) in time durationt f according to (5) and (6). In this case, one can integrate the differential equations (5) and
(6), respectively,

n1,f =

∫ tf

0
q1dt −

∫ tf

0
G1(n1(t)) · u(t)dt + n1,0 (24)

n2,f =

∫ tf

0
q2dt +

∫ tf

0
G1(n1(t)) · u(t)dt −

∫ tf

0
G2(n2(t))dt + n2,0 (25)

then the two equations (24) and (25) are summed, one gets

n1,f + n2,f =

∫ tf

0
(q1 + q2)dt −

∫ tf

0
G2(n2(t))dt + n1,0 + n2,0 (26)

Note that
∫ tf
0

G2(n2(t))dt is the criterion to be optimized, see (4), hence substituting (4) into (26), one gets

J = max
u

(
− n1,f − n2,f +

∫ tf

0
(q1 + q2)dt + n1,0 + n2,0

)
(27)

which is equivalent to optimize:

J = min
u

(
n1,f + n2,f

)
(28)

Hence, (28) implies (4). When the end state is a priori known,then the criterionJ is independentof u(t) and the
problem is a feasibility control problem: if any applied control u(t) brings the initial state (n2,0, n1,0) to the end state
(n2,f , n1,f ) in time durationt f where the initial state, end state, andt f are a priori known, then the applied controlu(t)
is optimal, in other words, all feasible controllers are also optimal. However, when the end point is assumed to be a
stable equilibrium point in stable region I, then accordingto (11) the sum of end staten1,f + n2,f (28) is minimized
when the control sequence ends withu(tf ) = umax.

Note that (27) is generally derived for any trajectory that moves and stays in the same region, i.e.G1(n1(t)) and
G2(n2(t)) are the same functions for 0≤ t ≤ t f . However, it is easily shown that (27) holds also for trajectory that
moves from one region to another while reaching the end statepoint. For example, let us consider a trajectory that
moves through three state regions IV, III, and I, as shown in Fig. 17, wheret1 andt2 the time instants when trajectory
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Figure 16: Numerical example 3: stable regions for different q1 demand.

Fig. 15 and Fig. 16 are as expected. The stable region becomes smaller as demand increases,
since increasing demand q2 or/and demand q1 increases the destination to region 2 which be-
comes more congested, then the system of the two regions will intend to be jammed, i.e. larger
unstable region and smaller stable region.

4 State-feedback control for two-region MFDs

In this section, the stabilizing control solution is derived for the two-region MFDs control
problem (4)–(9). It will be shown in Section 4.1 that the two-region control problem is a
feasibility (or stabilizing) problem, i.e. any feasible sequence of perimeter control is an optimal
solution, and all feasible solutions have the same value of the criterion for the same initial and
end states. However, when the control problem has no feasible solution for the initial state, then
the control cannot stabilize the two-region MFDs and the stable equilibrium end point is not
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reachable, hence, an optimal solution is derived for a relaxed problem as shown in Section 4.2.

4.1 Stabilizing control for feasibility control problem

First, let us assume that the two-region MFDs control problem has a feasible solution for the
given initial state, i.e. one (at least) feasible solution u(t) exists for 0 ≤ t ≤ tf , such that
satisfies (9) and can bring initial states (7) to end states (8) in time duration tf according to (5)
and (6). In this case, one can integrate the differential equations (5) and (6), respectively,

n1,f =

∫ tf

0

q1dt−
∫ tf

0

G1(n1(t)) · u(t)dt+ n1,0 (24)

n2,f =

∫ tf

0

q2dt+

∫ tf

0

G1(n1(t)) · u(t)dt−
∫ tf

0

G2(n2(t))dt+ n2,0 (25)

then the two equations (24) and (25) are summed, one gets

n1,f + n2,f =

∫ tf

0

(q1 + q2)dt−
∫ tf

0

G2(n2(t))dt+ n1,0 + n2,0 (26)

Note that
∫ tf
0
G2(n2(t))dt is the criterion to be optimized, see (4), hence substituting (4) into

(26), one gets

J = max
u

(
− n1,f − n2,f +

∫ tf

0

(q1 + q2)dt+ n1,0 + n2,0

)
(27)

which is equivalent to optimize:

J = min
u

(
n1,f + n2,f

)
(28)

Hence, (28) implies (4). When the end state is a priori known, then the criterion J is indepen-

dent of u(t) and the problem is a feasibility control problem: if any applied control u(t) brings
the initial state (n2,0, n1,0) to the end state (n2,f , n1,f) in time duration tf where the initial state,
end state, and tf are a priori known, then the applied control u(t) is optimal, in other words,
all feasible controllers are also optimal. However, when the end point is assumed to be a stable
equilibrium point in stable region I, then according to (11) the sum of end state n1,f + n2,f (28)
is minimized when the control sequence ends with u(tf) = umax.

Note that (27) is generally derived for any trajectory that moves and stays in the same region,
i.e. G1(n1(t)) and G2(n2(t)) are the same functions for 0 ≤ t ≤ tf . However, it is easily
shown that (27) holds also for trajectory that moves from one region to another while reaching
the end state point. For example, let us consider a trajectory that moves through three state
regions IV, III, and I, as shown in Fig. 17, where t1 and t2 the time instants when trajectory
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Figure 17: Trajectory moves through three regions IV, III, and I

enters state region III and I, respectively. One can calculate the value of the criterion J1 in
region IV for [0, t1], and J2 in region III for [t1, t2], and J3 in region I for [t2, tf ] according to
(27), respectively,

J1 = −n1(t1)− n2(t1) +

∫ t1

0

(q1 + q2)dt+ n1,0 + n2,0 (29)

J2 = −n1(t2)− n2(t2) +

∫ t2

t1

(q1 + q2)dt+ n1(t1) + n2(t1) (30)

J3 = −n1,f − n2,f +

∫ tf

t2

(q1 + q2)dt+ n1(t2) + n2(t2) (31)

The value of the criterion J from 0 to tf is calculated by summation of J1 (29), J2 (30), and J3
(31), one gets (27). Hence, (27) holds for any trajectory that moves through different regions
with different G1(n1(t)) and G2(n2(t)), and the problem is still a feasibility problem. Note
that according to (27), the control problem is still a feasibility problem when demand varies
with time. Instead of constant demand inside the integral, it will be substituted by time varying
demand, which does not affect the derivation of (27).

However, the control problem may be not feasible for all initial states where the end state is
not reachable, hence an optimal solution is derived for a relaxed problem where the end state is
free.

4.2 Optimal control for relaxed control problem

When the two-region control problem (4)–(9) has no feasible solution for the initial state, an
optimal solution is derived for a relaxed control problem: the two-region control problem with
free end state, i.e. (4), (5), (6), (7), (9), and (n2,f , n1,f) is free. Note that for the relaxed problem,
the assumption that control time horizon tf is large enough to reach end state is dropped since
the end state is free. The optimal relaxed control problems are solved separately for the 4
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state regions in the (n2, n1)-plane corresponding to Gi(ni(t)), i = 1, 2, in each state region.
The Pontryagin maximum principe is used to solve the relaxed problems, see Pontryagin et al.

(1962). In the following, the optimal solution is presented in details only for state region I.

For state region I, the Hamiltonian, denoted by HI , is formed as

HI = R1,I · n1(t) · u(t) · (p2(t)− p1(t)) + p1(t) · q1 + p2(t) · (q2 −R2,I · n2(t)) +R2,I · n2(t)

(32)

where R1,I = γ1/µ1, R2,I = γ2/µ2, and p1(t), p2(t) are the costate variables that satisfy

dp1
dt

= −∂H
∂n1

= R1,I · u(t) · (p1(t)− p2(t)) (33)

dp2
dt

= −∂H
∂n2

= R2,I · (p2(t)− 1) (34)

Recall that the end state (n2(tf ), n1(tf )) is free, hence according to Pontryagin et al. (1962) it
follows that

p1(tf ) = 0 (35)

p2(tf ) = 0 (36)

The Hamiltonian must be maximized over the control variable u(t) subject to the control con-
straint (9). The optimal control solution obtained by maxuH in (32) is

u(t) =

umax if p2(t)− p1(t) > 0,

umin if p2(t)− p1(t) < 0.
(37)

A switching point ts [sec] is the time instant that satisfies p2(ts) = p1(ts). If there exists a
switching point, then the optimal policy will be determined by that point.

The initial conditions of the costates should be chosen such that the resulting solution satisfies
the constraints (35), (36) and optimality condition (37). Note that if p2(0) > 1 then dp2/dt > 0,
see (34), but this is a contradiction since p2(tf ) = 0, see (36), hence lets assume that p2(t) is
0 ≤ p2(t) < 1 and p1(0) > 0. Since p1(tf ) = 0, see (35), p1(t) must be decreasing for
0 ≤ t < tf , i.e. dp1/dt < 0, which implies p1(t) < p2(t) for 0 ≤ t < tf according to (33),
therefore the optimal control is u(t) = umax, see (37). In this case, there will be no switching
point ts otherwise dp1/dt > 0 for ts ≤ t ≤ tf , however p1(tf ) = 0 is not satisfied, therefore
ts = tf .

The optimal solutions for the other three regions II, III, and IV are derived in a similar way,
however the derivations and an independent check of optimality performed by numerical solu-

19



Stability Analysis of Traffic Control in Two-region Urban Cities May 2011

n1(t)

n2(t)µ2

µ1

w1

w2 [veh]

[veh]

Optimal control

n1(t)

n2(t)µ2

µ1

w1

w2

Stabilizing control

[veh]

[veh]

Oprimal control

Case i Case ii

RAumin

RAumax

RAumax

RAumin

Stabilizing control
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Figure 18: State-feedback control for cases i and ii (green:applyumax, blue: applyumin)
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Figure 19: State-feedback control strategy for example 4.
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Figure 18: State-feedback control for cases i and ii (green: apply umax, blue: apply umin)

tions of the corresponding linear programming models of the four state regions are not shown
here. The summary of optimal solutions for the relaxed problems is as follows, if the initial
state (n2,0, n1,0) belongs to: state region I apply u(t) = umax, state region II apply u(t) = umin,
state region III apply u(t) = umin, and state region IV apply u(t) = umin.

4.3 State-feedback control strategy

A state-feedback control strategy is proposed according to the feasibility of two-region control
problem (4)–(9), see Fig. 18. If the control problem has a feasible solution for the initial state,
i.e. the initial state belongs to the stable region, then a stabilizing state-feedback is applied to
reach the optimal stable equilibrium point, otherwise, if the initial state belongs to the unstable
region then an optimal state-feedback is applied, see Section 4.2.

The stabilizing state-feedback control depends on the RAumax , RAumin
for case ii and also on

ũmax for case i, where ũmax is a reverse trajectory calculated with umax starts from unstable
equilibrium point in state region IV corresponding to umin, see Fig. 18. Note that it is not
necessary that ũmax trajectory ends in unstable equilibrium point corresponding to umax as
shown in the figure.

The stabilizing state-feedback control is as follows. If the initial state belongs to the RAumax ,
then apply u(t) = umax for 0 ≤ t ≤ tf since it is proved that the value of the criterion is
optimized with u(tf) = umax, see Section 4.1. If the initial state does not belong to RAumax but
belongs to the RAumin

, then apply u(t) = umin until the state trajectory enters the RAumax . If
the initial state belongs to the stable region and does not belong to RAumax or RAumin

, then for
case ii apply u(t) = umax, however, for case i it depends on ũmax which splits this region to
two: implement umax for a point in region between RAumax and ũmax, and apply umin for region
between ũmax and the border of stable region, see Fig.18.

The state-feedback control strategy (n2, n1)-plane is demonstrated by example 4 with umax =
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Figure 19: State-feedback control strategy for example 4.

0.5, umin = 0.4 for several initial state points, as shown in Fig. 19.

Note that when the demands are essentially non-constant the state-feedback control solution
can be used in the scheme of a predictive control by recalculating boundary stable region,
RAumax , RAumin

, and control at each new control step where the time varying demands can be
approximated as constant demands for each control step.

Remark 1. If the necessary and sufficient conditions (15) and (16) for equilibrium points do

not hold for the current demands, i.e. the system does not have a stable equilibrium point, the

control problem (4)–(9) has no feasible solution for any u(t) since the end point is defined as

a stable equilibrium point. In this case, the optimal control solution is identical to the relaxed

problems and should be applied until the demands change with time such that the necessary

and sufficient conditions (15) and (16) hold.

5 Region of attraction for three states two-region system

In the previous section, a state-feedback solution is derived for the two states two-region prob-
lem. It was shown that when the necessary and sufficient conditions (15) and (16) hold, then
the state space of the control problem is divided to stable and unstable regions, where each
region has different state-feedback control: a stabilizing for stable region and an optimizing for
unstable regions. Recall that RAs were used in the two states two-region control for stability
characterization and state feedback strategy.

This state-feedback strategy holds for more complicated two-region system, e.g. two regions
with three demand. However, the characterization of a stable and unstable regions for three
state system is a tedious task but straightforward. Hence, only numerical results for RAs for
three states two-region system are presented.
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Figure 20: System of three states two-region system.

A partitioned traffic network with three demand is schematically shown in Fig. 20. There are
two endogenous demand qii(t) [veh/sec], i = 1, 2, and one exogenous demand q12(t) [veh/sec].
Therefore, three accumulation states n11(t), n12(t), and n2(t) [veh] are needed to model the
dynamics equations, where n11(t) or n12(t) is the total number of vehicles in region (1) with
destination (1) or (2) at time t, respectively, note that n1(t) = n11(t) + n12(t).

The control problem of three states two-region system is formulated as follows:

J = max

∫ tf

0

[
n11(t)

n1(t)
·G1(n1(t)) +G2(n2(t))

]
dt (38)

subject to

dn11(t)

dt
= q11(t)−

n11(t)

n11(t) + n12(t)
·G1(n1(t)) (39)

dn12(t)

dt
= q12(t)−

n12(t)

n11(t) + n12(t)
·G1(n1(t)) · u(t) (40)

dn2(t)

dt
= q2(t) +

n12(t)

n11(t) + n12(t)
·G1(n1(t)) · u(t)−G2(n2(t)) (41)

n11(0) = n11,0 ; n12(0) = n12,0 ;n2(0) = n2,0 (42)

n11(tf) = n11,f ; n12(tf) = n12,f ;n2(tf) = n2,f (43)

umin ≤ u(t) ≤ umax (44)

Note that the optimization control problem for the three accumulation states (38)–(44) is also
a feasibility problem. This is easily proved in the same way as was done for the two states
problem, see Section 4.1.

The input data for numerical example 5 are similar to example 1. However, the demand q1(t) =
0.194[veh/sec] is split into two demands: q11(t) = 4/7 · q1(t) = 0.111[veh/sec] and q12(t) =
3/7 · q1(t) = 0.083[veh/sec]. The boundary surfaces of RAumax and RAumin

are shown in red
and cyan color, respectively, in Fig. 21. The rest of the input data is as follows: the traffic flow
demand rate q2 = 0.069 [veh/sec], the perimeter control umax = 0.8, umin = 0.45, the MFD
parameters are: γ1 = 0.5 [veh/sec], µ1 = 50 [veh], w1 = 200 [veh], γ2 = 0.583 [veh/sec],
µ2 = 150 [veh], w2 = 450 [veh].
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Figure 21: Numerical example 5:RAsboundary surfaces in three states two-region system, RAumax surface in red, RAumin surface in cyan, and
trajectories in green.

Examples 6 and 7 show the effect of different split of demand in region 1 on the RAumax. In example 6, the
demand of region 1 is splitq11(t) = 2/3 · q1(t) andq12(t) = 1/3 · q1(t), while in example 7 the split is reversed, i.e.
q11(t) = 1/3 · q1(t) andq12(t) = 2/3 · q1(t). The total demand for region 1 and 2 areq1(t) = 0.083[veh/sec] and
q2(t) = 0.472[veh/sec], while the other input data are similar to those of example 5. Although the total demandq1 is
the same for examples 6 and 7, the RAumax shrinks when the exogenous demandq12(t) increases.

6. Conclusions

In this paper, the optimal control problem for two-region urban cities is formulated where the criterion is to
maximize the number of vehicles that complete their trips and reach their destinations by controlling and managing
accumulations in the two regions. The macroscopic fundamental diagram for each region is assumed to be known and
in triangle shape. One of the two regions has an exogenous demand, i.e. all trips are external, while the second region
has an endogenous demand, i.e. all trips are internal.

The dynamic equations of accumulations are analyzed, and equilibrium points of the system are identified. Nec-
essary and sufficient conditions for existence of equilibrium points are derived. Based on the phase portraits of the
dynamic equations, a new algorithm is presented to compute numerically and analytically the boundary between stable
and unstable regions.

It was proven that the formulated control problem is a feasibility problem, i.e. if an applied controlu(t) brings the
initial accumulations to a priori optimal stable equilibrium accumulations, thenu(t) is an optimal perimeter control.
However, if the problem is not feasible for the current accumulations, i.e. the current accumulations belong to unstable
region, then the optimal control policy for a relaxed problem should be applied. Hence, based on the stable and unsta-
ble regions, a state-feedback strategy is proposed where the optimizing control law of stable region and the optimal
control law for unstable region are presented in an analytical feedback form, as a function of current accumulations.
In the case when demands are essentially non-constant this solution can be used in the scheme of a predictive control
by recalculating control at each new step.
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Figure 21: Numerical example 5: RAs boundary surfaces in three states two-region system,
RAumax surface in red, RAumin

surface in cyan, and trajectories in green.
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Figure 22: Numerical example 6: RAumax surface boundary.
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Figure 23: Numerical example 7: RAumax surface boundary.
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Figure 22: Numerical example 6: RAumax surface boundary.

Different shapes of RAs surfaces are expected according to the two states analysis in Sec-
tion 3.1. For a specific accumulation n11 the boundary shape of (n12, n2)-plane would be one
of the three cases a, b, and c shown in Fig. 6, e.g. the RAumax and RAumin

boundary shapes in
(n12, n2)-plane with n11 = 0 are similar to those in Fig. 10.

Examples 6 and 7 show the effect of different split of demand in region 1 on the RAumax . In
example 6, the demand of region 1 is split q11(t) = 2/3 · q1(t) and q12(t) = 1/3 · q1(t), while
in example 7 the split is reversed, i.e. q11(t) = 1/3 · q1(t) and q12(t) = 2/3 · q1(t). The total
demand for region 1 and 2 are q1(t) = 0.083[veh/sec] and q2(t) = 0.472[veh/sec], while the
other input data are similar to those of example 5. Although the total demand q1 is the same for
examples 6 and 7, the RAumax shrinks when the exogenous demand q12(t) increases.
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Figure 22: Numerical example 6: RAumax surface boundary.
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Figure 23: Numerical example 7: RAumax surface boundary.

6 Conclusions

In this paper, the optimal control problem for two-region urban cities is formulated where
the criterion is to maximize the number of vehicles that complete their trips and reach their
destinations by controlling and managing accumulations in the two regions. The macroscopic
fundamental diagram for each region is assumed to be known and in triangle shape. One of the
two regions has an exogenous demand, i.e. all trips are external, while the second region has
an endogenous demand, i.e. all trips are internal.

The dynamic equations of accumulations are analyzed, and equilibrium points of the system are
identified. Necessary and sufficient conditions for existence of equilibrium points are derived.
Based on the phase portraits of the dynamic equations, a new algorithm is presented to compute
numerically and analytically the boundary between stable and unstable regions.

It was proven that the formulated control problem is a feasibility problem, i.e. if an applied con-
trol u(t) brings the initial accumulations to a priori optimal stable equilibrium accumulations,
then u(t) is an optimal perimeter control. However, if the problem is not feasible for the cur-
rent accumulations, i.e. the current accumulations belong to unstable region, then the optimal
control policy for a relaxed problem should be applied. Hence, based on the stable and unstable
regions, a state-feedback strategy is proposed where the optimizing control law of stable region
and the optimal control law for unstable region are presented in an analytical feedback form,
as a function of current accumulations. In the case when demands are essentially non-constant
this solution can be used in the scheme of a predictive control by recalculating control at each
new step.
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A Trajectory calculation of regions boundaries for cases a,
b, and c

A.1 case a

The trajectory from the unstable equilibrium point (n2,eq, n1,eq)IV to point B is calculated in
reverse time (with negative t). Solution in reverse time is equivalent to solution in forward time
(with positive t) of the dynamic equation

dñ1(t)

dt
= −dn1(t)

dt
(45)

dñ2(t)

dt
= −dn2(t)

dt
(46)

where dn1(t)/dt and dn2(t)/dt are the dynamic equations for state region IV, i.e. substituting
(10) into the dynamic equations (5) and (6) with µ1 ≤ n1(t) ≤ w1 and µ2 ≤ n2(t) ≤ w2. The
direction of (ñ2(t), ñ1(t)) trajectory will be in reverse way, i.e from point B to the unstable
equilibrium point (n2,eq, n1,eq)IV .

Given the initial state of the trajectory, i.e. n1(0) = µ1 and n2(0) = n2,B, where the starting
time is zero, one can integrate (45) and (46), respectively,

ñ1(t) = w1 −
q1 · (w1 − µ1)

γ1 · u
+ (w1 − µ1) ·

(
q1

γ1 · u
− 1

)
· e

γ1·u·t
µ1−w1 (47)

ñ2(t) =
e
γ1·u·t
µ1−w1 · (q1 − γ1 · u) · (µ1 − w1) · (µ2 − w2)

γ2 · (w1 − µ1) + γ1 · u · (µ2 − w2)
+

+
µ2 · (q1 + q2) + (γ2 − q1 − q2) · w2

γ2
+ c2 · e

γ2·t
µ2−w2

(48)

c2 =
γ1 · u · (q1 − γ1 · u) · w1 · (µ2 − w2)

2

(γ2 · µ1 + γ1 · u · (w2 − µ2)) · (γ2 · (µ1 − w1) + γ1 · u · (w2 − µ2))
(49)

A.2 case b

The trajectory from point C to B is in state region IV, hence the reverse equation system and
the trajectory from B to C is the same as in case a, i.e. (47), (48), and (49).

For trajectory CD, the dynamic equations according to (45) and (46) are reversed where
dn1(t)/dt and dn2(t)/dt are the dynamic equations for state region III, i.e. substituting (10)
into the dynamic equations (5) and (6) with µ1 ≤ n1(t) ≤ w1 and 0 ≤ n2(t) ≤ µ2. The
direction of (ñ2(t), ñ1(t)) trajectory will be in reverse way, i.e from C to D.

Given the initial state of the trajectory CD, i.e. n1(0) = n1,C and n2(0) = µ2, where the starting

25



Stability Analysis of Traffic Control in Two-region Urban Cities May 2011

time is zero, one can integrate (45) and (46), respectively,

ñ1(t) =
µ1 · q1 − q1 · w1 + γ1 · u · w1

γ1 · u
+

(
n1,C − w1 −

q1 · (µ1 − w1)

γ1 · u

)
· e

γ1·u·t
µ1−w1 (50)

ñ2(t) = µ2 ·
(
q1 + q2
γ2

+
e
γ1·u·t
µ1−w1 · (µ1 · q1 − q1 · w1 + γ1 · u · (w1 − n1,C))

γ1 · µ2 · u+ γ2 · (w1 − µ1)

)
+ c2 · e

γ2·t
µ2 (51)

c2 = µ2 ·
(
1− q1 + q2

γ2
− q1 · (µ1 − w1) + γ1 · u · (w1 − n1,C)

γ1 · µ2 · u+ γ2 · (w1 − µ1)

)
(52)

The curves BC and CD for case b are calculated according to the following steps:

1. find TBC [sec] the time instant when trajectory BC enters state region III, i.e. solve
numerically ñ2(TBC) = µ2, where ñ2(t) is given by (48) and (49),

2. calculate trajectory BC, i.e. calculate (ñ1(t), ñ2(t)) for t = 0 → TBC according to (47),
(48), and (49).

3. save point C = (n2,C , n1,C) = (µ2, ñ1(TBC)),

4. find TCD [sec] the time instant when trajectory CD intersects n2(t) = 0, i.e. solve numer-
ically ñ2(TCD) = 0, where ñ2(t) is given by (51) and (52),

5. calculate trajectory CD, i.e. calculate (ñ1(t), ñ2(t)) for t = 0 → TCD according to (50),
(51), and (52).

A.3 case c

In this case, the trajectory BC is in state region I. Hence, given the initial state of the trajectory
BC, i.e. n1(0) = n1,B and n2(0) = µ2, where the starting time is zero, one can integrate
(45) and (46), respectively, where dn1(t)/dt and dn2(t)/dt are the dynamic equations for state
region I, i.e. substituting (10) into the dynamic equations (5) and (6) with 0 ≤ n1(t) ≤ µ1 and
0 ≤ n2(t) ≤ µ2,

ñ1(t) =
µ1 · q1
γ1 · u

+

(
n1,B −

µ1 · q1
γ1 · u

)
· e

γ1·u·t
µ1 (53)

ñ2(t) = µ2 ·
(
q1 + q2
γ2

+
e
γ1·t·u
µ1 · (−µ1 · q1 + γ1 · n1,B · u)

γ2 · µ1 − γ1 · µ2 · u

)
+ c2 · e

γ2·t
µ2 (54)

c2 = µ2 ·
(
1− q1 + q2

γ2
− γ1 · n1,B · u− µ1 · q1

γ2µ1 − γ1 · µ2 · u

)
(55)
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It holds for point C that ñ1(TBC) = µ1, hence, from (53) one can calculate analytically TBC

TBC = ln

(
µ1 · (1− q1

γ1·u)

n1,B − q1
γ1·u

)
· q1
γ1 · u

(56)

The trajectoryCD is calculated in the same way that was done in case b, however with different
initial state. The dynamic equations are reversed according to (45) and (46) where, dn1(t)/dt

and dn2(t)/dt are the dynamic equations for state region III, i.e. substituting (10) into the
dynamic equations (5) and (6) with µ1 ≤ n1(t) ≤ w1 and 0 ≤ n2(t) ≤ µ2. Given the initial
state of the trajectory CD, n1(0) = µ1 and n2(0) = ñ2(TBC), where the starting time is zero,
one can integrate (45) and (46), respectively, and one get same equations as in case b, i.e. (50)
and (51), where c2 is slightly different:

c2 = n2,C − µ2 ·
(
q1 + q2
γ2

+
q1 · (µ1 − w1) + γ1 · u · (w1 − µ1)

γ1 · µ2 · u+ γ2 · (w1 − µ1)

)
(57)

The curves BC and CD for case c are calculated according to the following steps:

1. B = (µ2, n1,B).

2. calculate analytically TBC according to (56).

3. calculate trajectory BC, i.e. calculate (ñ1(t), ñ2(t)) for t = 0→ TBC according to (53),
(54), and (55).

4. save point C = (n2,C , n1,C) = (ñ1(TBC), µ1),

5. find TCD [sec] the time instant when trajectory CD intersects n2(t) = 0, i.e. solve
numerically ñ2(TCD) = 0, where ñ2(t) is given by (51) and (57),

6. calculate trajectory CD, i.e. calculate (ñ1(t), ñ2(t)) for t = 0→ TCD according to (50),
(51), and (57).
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