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Abstract

This paper shows with a agent-based simulation that models with more decision dimensions 

produce  different  equilibria  in  terms  of  network  loads  and  resulting  utilities.  In  case  of 

infrastructural  measures  additional  decision  dimensions  provide  the  model  with  more 

flexibility to adjust to the new situation. Therefore we note higher predicted utility gains with 

additional decision dimensions. The errors made by disregarding relevant decision dimensions 

might influence the decision on whether to build a infrastructural measures or not.

The simulation experiments also indicate that travel time savings do not capture utility gains 

appropriately,  because additional  decision dimensions  allow for trade-off's  between utility 

components.
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1. Introduction

To evaluate infrastructural projects it is common practice to do a cost-benefit analysis ex ante. 

To assess the benefits of the infrastructural  measure,  guidelines usually propose to predict 

travel time savings and to monetize them using values of time.

Travel time savings originate due to additional or improved transport services which reduces 

also traffic volume on congested links. Traditional transport models usually consider route 

and mode choice as behavioural dimensions of travellers to predict the expected utility gains. 

However, it is pretty obvious that in reality travellers might also change departure time or 

destination  (if  there  are  alternatives  available)  to  adapt  to  a  new transport  infrastructure. 

Consequently, a model that is not considering departure time and destination choice might not 

include all consequences (processes) arising due to a modified transport infrastructure as it is 

neglecting some aspects of travel behaviour. In general, a model that neglects relevant degrees 

of  freedom might  produce  misleading  results  in  terms  of  calculated  traffic  volumes  and 

utilities respectively. This issue was recently discussed by Metz (2008).

We  want  to  concentrate  on  the  calculation  of  utilities  produced  through  a  transport 

infrastructure.  The  hypothesis  is  that  expected  gains  in  utility  do  not  only  depend  on 

connection1 choice (allowing to avoid congested links), but also on location choice (allowing 

to visit cheaper locations) and departure time choice (allowing to avoid early or late arrival). 

Consequently a model that is not considering departure time and location choice might not be 

able to calculate the gains produced by an improved transport infrastructure correctly.

The integration of additional dimensions of decision making to calculate future traffic flows 

raises the question whether travel time savings alone are still an appropriate indicator to judge 

on infrastructural  measures. If we assume that travellers also make location and departure 

time  choices,  we  will  probably  have  to  integrate  utility  components  influenced  by  such 

decisions to be consistent. In this respect we want to show that it is not sufficient to relay on 

travel time savings alone when estimating utility gains.

However we do not want to discuss what utility components to integrate in an evaluation in 

much detail.  We assume that the explainable utility of an alternative can be calculated by 

considering the travel time on a given connection, the time of late or early arrival and the 

price of the activity at a reached place. Other aspects determining the utility of travellers like 

comfort, risk or monetary costs are not modeled explicitly. We recognise that the integration 

of such aspects might be crucial for a judgement but the focus of this paper is on the influence 

of additional decision dimensions.

1We consider a sequence of links as connection. The mode may vary within a sequence.
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Accordingly we formulate the research objectives:

1. Show that traditional transport  models can not describe all  effects  occuring after a 

infrastructural measure.

2. Investigate  the  difference  between  calculating  the  benefits  in  terms  of  travel  time 

savings and an approach considering utilities from departure time choice and location 

choice.

To  investigate  these  issues  a  proof  of  concept  simulation  is  implemented  using  python 

programming language. The agent-based simulation calculates for a minimal urban system the 

stochastic user equilibrium of commuting inhabitants using discrete choice theory (Ben-Akiva 

and Lerman, 1985). We actually simulate the agents' decisions in respect to travel alternatives 

which results in traffic volumes and population densities of locations. For the experiments we 

introduce an infrastructural  measure and simulate the reaction of the agents with different 

decision dimensions available.  We analyse the results by comparing shifts in demand and 

donated utilities according to available decision dimensions.

The paper is organised in four main sections. The first section is explaining the theoretical 

background of the simulation. The following section describes the implemented algorithm and 

the simulated experiments in detail. We present the results in the third section by describing 

and interpreting them. The fifth sections contains the conclusions.
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2. Transport Models

In  this  chapter  we present  transport  models  as  tools  we need,  if  we want  to  evaluate  an 

infrastructural  measures a priori.  To introduce the basic concepts and methods behind the 

presented simulation in section 3, we recapitulate two main approaches for transport models, 

discrete choice theory, the assignment and the indicator of utility gains.

2.1 Modelling Approaches

2.1.1 Aggregate Approach

Traditional  aggregate  transport  models  (first  generation)  estimate  traffic  flows  based  on 

observed OD-relations and the analysis of traveller groups. This is done in four  sequential 

steps:

1. Trip generation modelling

2. Trip distribution modelling

3. Modal split modelling

4. Assignment

The fist step calculates the number of trips expected to origin or end in a specified location. 

This gives the outflows and inflows for a zone.

In the second step the amount of trips on a given OD-relation are calculated by using matrix 

techniques.  Several  models  have  been  presented  to  perform this  task  like  growth  factor  

models,  gravity models or  intervening-opportunities models (Ortúzar and Willumsen, 2001). 

Growth factor models are the simplest models. They just consider a uniform growth factor 

which is multiplied by each observed flow on a OD-relation. In gravity models transportation 

demand  is  derived  directly  from attributes  of  locations  and transportations  services.  This 

qualifies them as synthetic,  because they do not alter an observed flow. Another synthetic 

model is the intervening-opportunities model. The basic concept is that the probability of a 

trip to a destination j depends on the closer intervening opportunities (destinations) which also 

allow to satisfy the objective of the trip.  Such distribution models  are  actually  similar  to 

discrete choice models  as they model shares of travellers  for a specific OD-relation.  This 

share can be interpreted as an approximation of choice probability.

In  the  third  step  the  modal  split  is  estimated.  Empirically  defined  curves  determine  the 

fraction of a mode on a given OD-relation. The curves depend on mode characteristics like 
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generalised  costs.  If  the  models  for  trip  generation,  trip  distribution  and  modal  split  are 

integrated and simultaneously calibrated, we have a direct demand model.

The  assignment  step  distributes  a  known  OD-matrix  on  the  existing  routes.  With  the 

assumption that travellers take the path with minimal generalised costs, the problem is to find 

a  state  in  which  all  travellers  use  a  cost  minimal  path.  This  problem can  not  be  solved 

analytically because of the relation between link loads and generalised costs. Therefore we 

have  to  apply  a  numerical  method  which  approximates  the  solution  in  iterations.  The 

relationship between traffic load and generalised costs is cast in capacity restraint functions.

2.1.2 Disaggregate Approach

The second family of transport models are named as disaggregate because they calculate the 

traffic flow due to the analysis of individual travellers' decisions (second generation). They 

are  based  on  the  random  utility  theory  pioneered  by  McFadden  (1974).  The  economic 

framework  was  applied  and specialised  for  the  transportation  context  by  Domencich  and 

McFadden (1975) formulating discrete choice models to forecast transportation demand. Ben-

Akiva  and  Lerman  (1985),  Ortúzar  and  Willumsen  (2001)  and  Train  (2003)  give 

comprehensive overviews and good introductions. The last book focuses especially on the use 

of the model framework in simulations.

2.2 Discrete Choice Modelling

Discrete choice models assume that individual actors process information in a rational way 

when they face a decision situation. A decision situation is given when an individual q has to 

select  an alternative out of a set of discrete alternatives  A = {a1,  a2,  ...,  aN} at hand. The 

individual is assigning a utility value to each one of the alternatives an. The rational decision 

is then to pick the alternative with the highest utility.  This utility maximising approach is 

commonly known as the concept of  homo oeconomicus. The choice set  A may vary from 

situation to situation.

The utility of an alternative is the sum of an explainable component V and an unexplainable 

component ε.

Ua = Va * εa (2.1)
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The unexplainable  component,  or  residual,  contains  all  utility  an individual  assigns  to an 

alternative that is not coming from an observed variable. The residuals are supposed to be 

randomly distributed. This makes utility U stochastic.

The deterministic  utility  V of  an alternative  is  calculated  with a  utility  function which is 

usually a linear combination of variables.

V = ∑k ΦkjΧjkq (2.2)

2.2.1 Specification

We calculate  the  probability  of an alternative  with mathematical  models  which relate  the 

utility of an alternative to other alternatives' utility. The formulation of the model depends on 

the assumptions we make. If we assume that the alternatives are independent and the residuals 

identically Gumbel distributed (IID) we can formulate a logit model (MNL). In a logit model 

the probability of an alternative a to be chosen of individual q takes the form:

Paq = exp(βVaq) / ∑jA exp(βVjq) (2.3)

The  model  also  satisfies  the  condition  that  calculated  probabilities  are  independent  from 

irrelevant  alternatives  (IIA-condition).  This  means  that  logit  models  are  not  correct  if 

alternatives are correlated. If the correlated alternatives can be bundled in nests, it is possible 

to  formulate  a  hierarchical  logit (HL)  or  nested  logit  model.  Within  these  nests  the 

alternatives must again be independent which allows the assumption that residuals are IID.

If the correlations between the alternatives are unstructured a probit model can be used. The 

probit  model is  derived  from  a  multivariate  Normal  distribution  and  can  handle  totally 

arbitrary covariance matrices. A major drawback of such models is that in cases with more 

than three alternatives the solution is very complex.

Further specification concerns the utility function and the identification of the choice set. In 

respect to the utility function, it has to be decided which explanatory variables to integrate. If 

the variables itself are found an appropriate functional form has to be specified. This means 

that the variable does not enter the utility function as a pure number but in a functional form. 

The expression (2.2) would more precisely be formulated as:
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V = ∑k Φkj fkj(xjkq) (2.4)

Often  a  linear  formulation  is  adequate  but  for  example  for  destination  choice  non-linear 

functions have been found more  appropriate  (Foerster,  1981; Daly,  1982).  The functional 

form is important for the estimation of the parameters because the estimation routines do not 

converge to a unique value in any case. The functional form also has effects on trade-offs, 

elasticities and explanatory power. To find the appropriate functional form it is recommended 

to go back to economic theory (Ortúzar and Willumsen, 2001, 252).

Both formulations (2.2) and (2.4) are linear in parameters. This means that  Φ is a  vector of 

numbers.

2.2.2 Estimation

If once the discrete choice model is properly formulated the parameters are estimated. This is 

normally done applying the maximum likelihood method. The estimates are tested in terms of 

their sign and significance. The modeller has to decide whether or not to integrate the variable 

in question. The variable usually remains if the explanatory power of the model is increased. 

In this study the parameters are not estimated on the basis of observed data. Therefore we do 

not go into detail here.

2.3 Assignment

2.3.1 Equilibrium

In traffic  assignment  we usually  want  to calculate  the  user equilibrium (UE).  The UE is 

defined as the state of a capacity restraint transport system in which no traveller can find a 

better travel alternative any more. This is also known as  Wardrop's equilibrium. In a more 

general economic system one would speak of a  Walrasian equilibrium (Tesfatsion 2006, p. 

13). If the discrete choice model includes a randomly distributed component, a stochastic user 

equilibrium (SUE) is computed.

The social optimum, in which the travel costs over the hole system are minimised, is a second 

state we could be interested in. This is also refered to as Wardrop's second principle. Because 

one can not expect the travellers to act altruistic, this criterion is more interesting for planers, 

who might want to design the transport network in such a way that the user equilibrium meats 

the before mentioned condition.
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2.3.2 Assignment Methods

The  following  section  introduces  first  two  important  aspects  which  distinguish  traffic 

assignment methods: consideration of stochastic effects and capacity restraints. Afterwards 

we presented the method of agent-based simulation, which is used in this study.

Integration of Stochastic Effects

Stochastic effects recognise that a model can not predict the demand of an alternative with 

absolute certainty. Methods to integrate stochastic effects are simulation-based or proportion-

based.  Simulation-based  methods  usually  use  Monte  Carlo  technique.  This  allows  to 

incorporate stochastic effects, which originate in the individual perception of costs by each 

individual.  The  assignment  problem is  solved  by  simulating  a  series  of  random number 

experiments (Burrell, 1968). By analysing the outcome of these experiments the researcher is 

able to make statements about the variation in the simulation results.

In the proportion-based methods a loading algorithm is used that distributes trips arriving at a 

node to subsequent links. This distribution allows to integrate stochastics.

Capacity Restraints

If no capacity restraints are considered the link costs are fixed. In this case the all-or-nothing 

assignment  is  used.  If  we consider  capacity  restraints,  generalised  travel  costs  depend on 

calculated loads. This is especially important in congested networks, which make link costs 

varying substantially.

Within the methods for congested network assignment two approaches can be identified. The 

incremental method assigns fractions of the hole trip matrix subsequently.  A fraction once 

assigned will not be removed. This contains the disadvantage of assigning too much flow on a 

link  which  can  not  be  corrected  afterwards.  The  found  solution  will  then  not  meat  the 

equilibrium conditions.  The second way of loading a congested network is  known as the 

method of successive averages. In each iteration the hole trip matrix is loaded all-or-nothing 

with the link loads available form the preceding iteration. This yields new, auxiliary link loads 

F. The current link loads are calculated from the previous link loads and the auxiliary link 

loads with the following formula:

Va
n = (1 – Ф) Va

n-1 + Ф Fa (2.5)

with Ф = 1 / n
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This assignment method guarantees to converge towards a user equilibrium, even though not 

most efficiently in most cases. The Frank-Wolfe algorithm calculates Ф in every iteration to 

optimise convergence (Frank and Wolfe, 1956).

Capacity Restraint Functions

Capacity restraint functions relate the traffic load Vs of a link s with travel time needed to pass 

it. The functions incorporate usually two constants: free flow travel time and capacity. The 

capacity  defines  the  maximal  load  of  a  link.  There  are  several  formulations  of  capacity 

restraint functions which can be classified as ether hard or soft.  Hard formulated capacity 

restraint  functions  do  not  allow  loads  over  the  capacity,  which  means  that  the  curve  is 

asymptotic towards capacity level.  Soft formulations in contrary also yield cost values for 

loads  exceeding  capacity.  For  a  soft  capacity  restraint  function  we  give  the  example 

formulated by the Bureau of Public Roads in the USA (Ortúzar and Willumsen, 2001, 325):

Ts = t0s [1 + α (Vs /Qs)β] (2.6)

t0s...free flow travel time

Vs...load on the link s

Qs...capacity of link s

α, β...parameters specific for road type

A hard formulation is the one by Davidson (1966):

T = t0 * [1 + ζ *(Vs / Qs – Vs)] (2.7)

with ζ ... parameter specific for road type
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With such an approach it is neglected that travel time not only depends on the load of the link 

in question, but also on the loads of other elements in the network like subsequent or 

preceding nodes.

If we want to obtain travel costs instead of travel times, we just multiply travel times with a 

cost factor (value of time).

Agent-based Simulation

Agent-based simulation has been recognised as a powerful research tool in various disciplines 

(Portugali, 2000). The concept of agent-based simulation is to represent a complex system by 

single  components.  They  behave  in  a  certain  way  and  interact  with  each  other.  This 

components are commonly named agents. It is characteristic for agent-based simulations to 

get  to  the system behaviour  by simulating  the  behaviour  of  its  components.  This  feature 

makes agent-based simulation an interesting tool for the analysis of complex systems. The 

agent-based approach is especially suitable to analyse socio-economic systems because they 

consist  of  multiple  behaving  agents  and  are  recognised  as  complex  systems  (Tesfatsion, 

2006).

First step is to define the entities of the system which shall be represented as agents. Usually 

we are looking for autonomous elements, which characterise and influence the system to a big 

extent. We should also have in mind what process we want to simulate to choose the right 

entities. In a second step we have to define the behaviour of the agents. The basic elements of 

the  agents'  behaviour  are:  Perception  of  information,  processing  of  information,  decision 

rules, possible actions and moment of action. This means that we have to specify how the 

agents interact. An advantage of the agent-based simulation is that we have the possibility to 

define various types of agents which behave in different ways.

We can use an agent-based approach if we want to simulate transport as part of the socio-

economic system. The most important element to be modeled is the traveller. The behaviour 

can be reduced to a decision process in which the traveller selects a transport option. We can 

use a discrete choice model to simulate these decisions.

To provide the options for the travellers we have to model the components of the transport 

infrastructure. The transport infrastructure is modeled as a network. The network elements are 

influenced by the decisions which the travellers make.

To simulate the equilibrium of a congested network we have to simulate the decisions of the 

agents multiple times, because of the interdependence of agents' decisions and transportation 

options. Because we just consider one stage in advance, it is a fist order Markov-Chain which 

is simulated.
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2.4 Indicator of Utility Gains

In most cost-benefit analysis guidelines it is proposed to measure the benefits for travellers in 

generalised costs. Generalised costs are calculated by summing up all costs which arise to 

travellers using the transport infrastructure. Applying this concept in a discrete choice model 

means to sum up all costs of the chosen alternatives. We will name this quantity  ∑realised 

utility because the utility has actually been exploited.

The utility variations are calculated by subtracting the ∑realised utility after an infrastructural 

measure from the ∑realised utility before.  If the difference is positive we have utility gains, 

otherwise utility losses.
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3. Description of the Agent-based Simulation

3.1 Purpose of the Model

The simulation shall help us to estimate the error that occurs when we are neglecting some 

behavioural  dimensions  in  a  model.  The  presented  simulation  allows  us  to  study  the 

differences in simulated data according to modeled behavioural dimensions. This will give us 

indications whether the typically considered dimensions of behaviour are sufficient to assess 

an infrastructural measure. Here we have to point out that the model shall help us to make 

conclusions  about  modelling  itself.  We  do  not  have  the  aspiration  to  uncover  some 

phenomena in the real world. Therefore the simulation is far to abstract.

To study this issue we have to simulate the utility donated by transport infrastructure in an 

urban system. The simulation as to be complex enough to show multiple decision dimensions. 

The model also has to allow for measures to be introduced and it must be able to calculate 

utility gains. The experiments must be designed in such a way that it is meaningfull to make 

decisions in the considered dimensions.

3.2 Model Components

Locations

The simulation considers a minimal representation of a city. The city space is represented by 

four locations A, B, C and D. A is set as working location where all agents work. The houses 

where the agents live are supposed to be located in B, C, or D. The locations have the capacity 

to accommodate 600 agents each.

Transport Infrastructure

To get  home from work  the  agents  must  make  use  of  the  transport  infrastructure  which 

consists of links connecting the locations. The links are either of type main road (S1, S2, S3), 

highway (S4, S5) or  railway  (S6). We reduced the number of links to peripheral locations 

because the number of far traveling agents is smaller (see figure 1).
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Figure 1 Initial Transport Infrastructure

In case of main roads and highways we use the BPR-function to describe the relation between 

link load and travel costs. To consider the fact that a train can be full at a certain departure 

time the Davidson-function is applied in case of the railway link. The parameters specifying 

the capacity restraint functions are in the appendix (see table 7).

Agents

The city is populated by 1000 agents. We assume a constant population and that all agents 

make a home trip. We then simulate the agents choices for their home trips according to a 

discrete choice model.

The agents want to optimise their utility by choosing form the choice set the alternative with 

maximum utility. The objective function of the agents is:

max (U) = max(V(X) + ε) (3.1)

According to discrete choice theory the stochastic utility  U is the sum of the deterministic 

utility given by a utility function and a Gumbel distributed random utility ε. In this simulation 

the random utility is generated once per agent and specified alternative. This means that the 

random part represents the unknown preferences of an agent. The preferences remain constant 

in respect of an alternative during the simulation.

The deterministic utility is an additive, linear combination of weighted utility components. 

The utility components are a function of the three explaining variables connection choice (r), 

departure time choice (t) and destination choice (j). 

V(r, t, j) = βr * Vr(r, t, j) + βt * Vt(r, t, j) + βj *Vj(j) (3.2)
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with βr, βt, βj ... weighting parameters

The explaining variables are options at the corresponding decision dimension. The options at 

each decision dimension can be described as sets. 

We do not model mode choice in a comprehensive way. We simplify this aspect by presenting 

connections as  alternatives.  Connections we define  as  a  sequence of links  from origin to 

destination. An agent is allowed to continue its trip on a road even though he traveled on the 

rail way link before. The sets of connections therefore consists of all possible sequences of 

links from location A to one of the locations B, C or D. The initial  network provides 15 

connections. The B, C or D are the options for location choice.

Time is represented as a set of 24 possible departure time intervals. Each interval represents 5 

minutes which qualifies the model as dynamic (Janson, 1991, 143). This means that the agents 

have  a  time  span  of  2  hours  to  leave  from  work.  Note  that  in  the  simulation  time  is 

represented as a discrete quantity.

Each  combination  of  the  options  makes  up  an  alternative  of  the  choice  set.  Not  all 

combination  are  actually  valid  alternatives.  It  is  for  example  meaningless  to  choose  a 

connection which is not corresponding to the selected location.  With other words we just 

consider possible alternatives in the choice set.

Travel time utility has the functional form as follows:

Vr(r, t, j) = βg * Tr (3.3)

with Tr = ∑s Ts * δr
s (δr

s = 0, if s is part of connection r; δr
s = 1, otherwise)

The formula  shows that  travel  time  utility  depends on  connection  choice,  departure  time 

choice, location choice and an agent specific value of time βg. We just distinguish between 

agents which have a high time value (βg=2) versus agents with a low time value (βg= 1). Tr is 

the sum over the travel times Ts of each link of a connection. Travel time Ts is calculated with 

the corresponding capacity restraint function.

To model the utility originating in punctuality we use a formulation following Small (1982). 

Small introduces the arrival time τ = t + Ts and calculates than the utility according to:
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Vt(τ) = ζ * SDE(τ ) + (γ * SDL(τ) + δ * dL) (3.4)

with SDE = max(PAT – τ, 0)

SDL = max(τ – PAT, 0)

dL = 1, if τ > PAT,  dL = 0, if τ ≤ 0

PAT ... prefered arrival time

δ ... penalty for being late

ζ, γ ... utility loss rates for SDE and SDL respectively

The utility depends on the difference between arrival time τ and the prefered arrival time 

(PAT), which is set to the beginning of time interval 24. Because the arrival time depends on 

travel time also utility from punctuality depends on all three choices.

In a very rough approximation we assume that the price for living in a location depends on the 

availability of living space which is represented by an occupancy rate. The occupancy rate is 

the coefficient of a simple capacity Qj of the location and the number of agents selecting the 

location Aj. We further assume that the price (or dis-utility) is increasing exponentially with 

the occupancy rate. We define the utility function form location choice as:

V(j) = exp(λ * Aj/ Qj ) (3.5)

The  parameter  λ allows  to  make  the  simulation  more  sensitive  in  respect  to  location 

occupancy rate.

The utility functions are actually rather cost functions. But as maximising the utility is the 

same as minimising the costs it does not matter. However, we should keep it in mind for the 

interpretation of the results.

It is obvious that we are not claiming to integrate  all  important costs. We would have to 

model house moving costs, costs of mobility tools (fix costs of vehicles, season tickets etc.), 

transfer costs and so on.

15



Swiss Transport Research Conference________________________________________________Sept. 9 - 11, 2009

3.3 Experiments

We simulate the reaction to an infrastructural measure with different degrees of freedom for 

the deciding agents. The simulation experiments consist of calculating a SUE for the initial 

conditions (state 1), introducing an infrastructural measure and calculating a second SUE as a 

reaction to the measure (state 2). Note that state 2 depends on the degrees of freedom (open 

decision dimensions).

3.3.1 Infrastructural Measure

For this paper we introduce a new link as infrastructural measure. An additional highway S7 

shall connect location B with location C. The link has also a free-flow travel time of 2.5, a 

capacity of 40 agents per time interval and is characterised by a BPR-function.

Figure 2 Transport Infrastructure with New Highway S7

The measure  modifies  the  choice  set.  The  choices  of  the  agents  will  change,  if  the  new 

alternatives promise better utility. This lead to a new equilibrium.

The agents also have a preference for new alternatives. Therefore we have to generate a new 

stochastic component for each agent and each new alternative. We further assume that the 

preferences towards the old alternatives stay the same.

3.3.2 Decision Spaces

The combination of decision dimensions we want to name decision spaces. We experiment 

with four decision spaces:

● RTJ

● RJ
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● RT

● R

Each letter represents a decision dimension, at which the agents find a discrete number of 

options. If a dimension is not present, all agents will remain with the earlier chosen option in 

this dimension. This means for example that the departure time of the agents can not change 

in a decision space of RJ. The utility components remain the same.

As mentioned before we just want to have possible alternatives in the choice set. Therefore 

we  require  that  connection  choice  and  location  choice  have  to  be  consistent.  This  has 

implication for the possibility of decision spaces. It is not possible to choose a new location 

without choosing a new connection as well.  Therefore the combinations TJ and J are not 

considered.

The decision space has also to be reasonable in respect to the measure,  meaning that  the 

agents should be able to react to the measure. For example, agents with a decision space T can 

not react to a new link, because they can not chose a new connection.

3.4 Calculation of SUE

In  this  simulation  we calculated  SUE.  To find the  equilibrium of  state  1  and state  2  an 

iterative incremental assignment algorithm is implemented. It is described with the following 

steps:

1. Load the initial conditions and set the number of iterations n = 0.

2. Calculate the number of deciding agents M = number of agents/(n + 1)2.

3. Order the agents in respect of descending maximal potential utility gains.

4. Select the fist M agents as deciding agents.

5. Randomise the order of deciding agents.

6. Let  the  deciding  agents  make  their  decisions  and  update  the  network  after  each 

decision.

7. Actualise the utilities in the choice sets of all agents.

8. Calculate the maximal potential utility gain for each agent.

9. Go back to step 2 as long as n < 10 or sum of potential utility gains <> minimum of 

potential utility gains in preceding iterations. Also stop iterating if no agent finds a 

better alternative, oscillation occurs or the maximum allowed iterations is reached.

17



Swiss Transport Research Conference________________________________________________Sept. 9 - 11, 2009

The reasons for the formulation of the algorithm are:

● The continuous load of the network, which is an extrem case of an incremental 

assignment, avoids situations in which a lot of agents chose the same alternative. This 

leads to a pretty good approximation in the first iteration.

● A drawback of the incremental load is the information bias, which handicaps early 

deciding agents. The first agent to choose does not know anything about later 

decisions until the utilities of the alternatives are actualised at the and of an iteration. 

Therefore he might ends up with a non-optimal alternative. We overcome this problem 

by iterating several times over the population.

● To speed up equilibrium search we calculate the maximum potential utility gain for 

each agent considering the actualised utilities at the end of each iteration. Then we let 

these agents re-decide which have the highest potential utility gains.

● The termination condition is rather complex because of possible oscillation and 

unsteady convergence respectively. 

Because of oscillation we can not relay on the theoretical termination condition of no 

agent switching the selected alternative. Let us think of a single remaining agent to 

decide. He will choose the alternative with highest utility. This leads to a decrease of 

utility of this specific alternative because the loads are now higher. It is possible that 

with the new loads the previous alternative is again better for the agent and that he 

therefore switches back. This mechanism leads to oscillation.

The unsteady convergence obliges us to set a minimum number of iterations. To be 

sure to stop iterating with a good approximation of the equilibrium we require that the 

sum of potential utility gains, an indicator for how close we are to the equilibrium, is 

equal to the minimum calculated value of this quantity during the iterations before.

Still this means that the algorithm can not guarantee to find the equilibrium. If we hit a 

local minimum in the preceding iterations the algorithm will stop to early.

● We define the reduction of deciding agents such that after the minimum number of 

iterations approximately 1% of all agents decide again. The minimum number of 1 

deciding agents is reached after 22 iterations.

3.5 Parametrisation

Because  the  simulation  is  very abstract  and  not  based  on empirical  date,  we assume the 

parameters such that the average elasticity of demand ya of alternative  a in respect to travel 

time approximates 0.6. Further we required that the elasticities of demand in respect to the 

other explaining variables have the following relation: E(ya, Vr) > E(ya, Vt) >> E(ya, Vj). These 

requirements  express  that  it  is  easy to  change connection,  hard  to  change departure  time 
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because of fixed working hours2 and even harder to change location. Table 1 shows that the 

requirements are met in this simulations.

Table 1 Statistics3 of the Alternatives' Elasticities of Demand in Respect to Explaining 
Variables

Vr Vt Vj

Mean elasticity 0.527 0.135 0.033

Mean Coefficient of variation 0.353 0.991 1.019

Further  more  we require  that  the  agents  are  distributed  over  all  links  and locations.  The 

distribution over all links ensures that the fastest links are congested in some time intervals 

and that changing to an earlier or later time slot is not a better alternative because of late or 

early arrival. Therefore utility loss of early or late arrival must be chosen high enough to make 

agents changing the link. This ensures that the agents make trade-offs between all decision 

dimensions. The parameters of the utility function and the capacity restraint functions are set 

accordingly. They are shown in tables 6.

2 One could argue that departure time is easiest  to alter.  This is only true for people which determine their 

schedule in self responsibility. Employed people, however, have an externally determined schedule which they 

can not change that easyly.

3The statistics are calculated for state 1. The mean is calculated over 5 simulations. Comparing the means of the 

simulations revealed a coefficient of variation of less than 0.015.
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4. Results

In this section we present the differences between simulation results calculated with decision 

spaces RTJ, RT, R and RJ respectively. The difference in an indicator I between state 1 and 

state 2 (prediction) are the predicted variations due to the measure. These are computed as 

follows for each decision space X:

ΔX = I2X – I1 (4.1)

We  assume  that  the  simulation  with  RTJ  predicts  more  adequate  results.  Therefore  we 

compare  predictions  with  decision  space  RTJ  to  predictions  which  neglect  decision 

dimensions. The absolute error made with a decision space X are given by:

FX = ΔX – ΔRTJ (4.2)

The relative error is given by:

fX = FX / ΔRTJ (4.3)

The simulated data are compared on the basis of the following indicators:

● link and locations loads

● total travel time (∑Travel time)

● total traveled distance (∑Traveled distance)

● total of realised utility (∑Realised utility)

We start out with describing the simulated equilibria by means of link and locations loads. We 

then show the indicators of total  travel time and total  traveled distance.  We proceed with 

presenting the utility gains.
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4.1 Quantity Indicators

The simulated loads depend on the decision space used for simulation. We can show this in 

table 2 and figure 3.

Table 2 shows different counts of agents residing in B, C or D respectively. As a consequence 

we have different occupancy rates. The rates in table 2 can be interpreted as living costs at the 

corresponding locations. Therefore we can argue that simulations with location choice predict 

price variations at locations. In this case such models suggest that owners of living space in 

location D have benefits while owners of living space in location B have losses. It is obvious 

that simulations which neglect location choice will not predict occupancy rates different from 

state 1.

Table 2 Occupancy of Locations Respective to Decision Spaces

RTJ RT R RJ State 1

Location Count Rate Count Rate Count Rate Count Rate Count Rate

B 519 0.87 549 0.92 549 0.92 530 0.88 549 0.92

C 378 0.63 377 0.63 377 0.63 373 0.62 377 0.63

D 103 0.17 74 0.12 74 0.12 97 0.16 74 0.12

Figure 3 shows that also the loads of links are different depending on decision space used. We 

know that the utilities of the alternatives are consequently not the same because of capacity 

restraints. We show just one example to preserve clarity.

Figure 3 Loads of link S5
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In table 3 we see that the total of travel time decreases with all decision spaces as expected. 

However, we note that the decrease has not the same amount for all decision spaces. Traveled 

distances increase with location choice. The agents make use of the increased accessibility of 

location D where they can profit from low living costs (see table 2). This is reasonable. That 

∑Traveled  distance does  not  change  with  connection  choice  is  an  artefact  of  the  equal 

distances assumed for the links.

Table 3 Predicted Variations Respective to Decision Space

Average of 5 simulations ΔRTJ ΔRT ΔR ΔRJ

∑Travel time4 -540 -1543 -2050 -1356

∑Traveled distance 112700 0 0 84640

Table  4 contains the absolute  and relative error of predicted variations in travel  time and 

traveled distance. The errors are generally very high and show underestimating of predicted 

variations.

Without location choice no variation in traveled distance can occur. That's why the variation 

of  traveled  distance  is  underestimated  by  100%  with  such  decision  spaces.  Neglecting 

departure time choice leads to an underestimation of 23%.

The prediction of travel time reduction is overestimated up to 86%, if we neglect departure 

time choice and location choice. Neglecting departure time choice leads in this case to an 

overestimation of 52% and neglecting location choice of 23% respectively.

Table 4 Absolute and Relative Error of Predicted Variations

Average of 5 simulations FRT fRT FR fR FRJ fRJ

∑Travel time -1003 -0.23 -1510 -0.86 -816 -0.52

∑Traveled distance -112700 -1.00 -112700 -1.00 -28060 -0.23

4.2 Utility Gains

Table  5 shows  the  predicted  utility  variations.  ∑Realised  utility,  the  sum  of  the  utility 

components Vr, Vt and Vj, is the indicator for the over all utility gained through the measure. 

All indicators have a positive sign suggesting that the measure increases utility.

4The indicators we focus on in this section are describing the population. To calculate the indicator for the hole population we  

sum up the indicators of the individual agents. Thus we write ∑Travel time for the sum of all agents travel time.
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∑Realised  utility shows  the  expected  increase  in  utility  gains  with  additional  decision 

dimensions.  This  lets  us  conclude  that  neglecting  decision  dimensions  leads  to 

underestimation of utility gains. The reason is that agents can not profit form all  possible 

utility gains with reduced decision dimensions. We see this by analysing the composition of 

the realised utility.

The three utility components Vr, Vt and Vj show us the composition of ∑Realised utility. The 

results show that the compositions are quite different. This means that the agents gain or loose 

their utility differently according to the decision space. More decision dimensions provide the 

agent with more possibilities to adapt to new circumstances. The agents can better make use 

of  the  available  alternatives.  However,  we  can  not  allocate  the  additional  utility  gained 

through an additional decision dimension to one utility component.

Vr is actually the utility out of travel time savings. We note that this indicator is not showing 

the same utility gains in respect to varying decision spaces.  Neither we find the expected 

increase in utility with more degrees of freedom. Contrasting the utility out of travel time 

savings with the realised utility shows that the utility is not lost but transfered to other utility 

components. We conclude that it is inappropriate to measure utility gains in terms of travel 

time savings alone if  we suppose decision dimensions  such as departure  time choice and 

location choice to exist. Further we note that trade-off's are the reason why travel time savings 

do not show all utility gains.

Table 5 Predicted Utility Variations Respective to Decision Space

Average of 5 simulations ΔRTJ ΔRT ΔR ΔRJ

∑Vr 41.03 100.77 128.50 73.74

∑Vt 94.40 91.44 45.36 69.63

∑Vj 206.01 0.00 0.00 153.36

∑Realised utility 341.45 192.21 173.86 296.74

In  table  6 we  list  the  errors  in  predicted  utility  gains  for  the  realised  utility  and  its 

components.  We note substantial  underestimation for  ∑Realised utility. This up to 50% in 

case of decision space R. In this case the agents profit more from location choice than from 

departure time choice. The reason is that ∑Vt can be optimised to some extent by location and 

connection choice.

The components of the realised utility show even higher errors, which reflects the suppressed 

trade-offs. Utility out of travel time savings is generally overestimated.  The error is quite 

high,  64% and 42% respectively,  when we neglect  departure  time choice.  This finding is 

consistent  with  the  notion  that  travel  time  savings  tend  to  disappear  in  a  long  term 

perspective.
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Utility  gains  because  of  relocation  are  underestimated  by  100% when  location  choice  is 

absent. If the agents can not adjust their departure time utility from location choice is still 

underestimated by 25%.

Table 6 Absolute and Relative Error of Predicted Utility Variations

Average of 5 simulations FRT fRT FR fR FRJ fRJ

∑Vr 59.74 -0.05 87.47 -0.64 32.71 -0.42

∑Vt -2.96 0.48 -49.04 -0.39 -24.77 0.25

∑Vj -206.01 -1.00 -206.01 -1.00 -52.65 -0.25

∑Realised utility -149.24 -0.46 -167.59 -0.50 -44.71 -0.10
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5. Conclusions

The simulation experiments let us conclude that neglecting decision dimensions in a transport 

model overlooks some effects occuring after an infrastructural measure. In this paper we show 

that the quantitative structure in the transport system is different and that therefore calculated 

utilities depend on how many decision dimensions are considered. This concerns as well the 

utility  component  of  travel  time  savings,  which  leads  to  the  conclusion  that  travel  time 

savings can not capture the utility gains appropriately.  In fact,  the results indicate that the 

utility from travel time savings is overestimated, if departure time and/or location choice are 

not  considered.  Different  compositions  of  the  realised  utility  suggest  that  the  reason lies 

within trade-offs between utility components.

Modelling more decision dimensions reveals higher utility gains. The reason is the higher 

flexibility of the actors, which allows them to adjust their choices more comprehensively. 

This indicates  that  neglecting decision dimensions  can be a  reason why an infrastructural 

measure is not realised.

Neglecting decision dimensions also prevents us to some extent from knowing who is going 

to profit from the infrastructural measure. In this respect the simulations point at the fact that 

land prices are influenced by improvements of transportation infrastructure and that models 

without location choice can not capture this effect.

If we suppose behavioural dimensions to exist, we should model them and consider utility 

components  directly  influenced by them. Otherwise it  is  likely that  we are missing some 

consequences of an infrastructural measure. However, it depends on the measure we want to 

evaluate which decision dimensions have to be considered.
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Appendix

Table 7 Model parameters

Name Symbol Value

Weighting parameter for travel time utility βr -0.27

Weighting parameter for utility from punctuality βt -0.06

Weighting parameter for location choice utility βj -0.15

Utility loss rate for SDE ζ 2

Utility loss rate for SDL γ 5

Penalty for being late δ 20

Location occupancy rate sensitivity λ 4

BPR-parameter alpha main road link α 0.7

BPR-parameter beta main road link β 5

Free flow travel time on main road link T0 3

Capacity of main road link Q 27

BPR-parameter alpha highway link α 0.4

BPR-parameter beta highway link β 6

Free flow travel time on highway link T0 2.5

Capacity of highway link Q 40

Davidson-parameter jota ζ 0.4

Free flow travel time on railway link T0 3.5

Capacity of railway link Q 33

27



Swiss Transport Research Conference________________________________________________Sept. 9 - 11, 2009

Table 8 Calculated Indicators Respective to Decision Space

RTJ RT R RJ State 1

∑Vr -2167.53 -2107.79 -2080.07 -2134.82 -2208.56

∑Vt -478.15 -481.11 527.19 502.92 -572.55

∑Vj -1091.77 -1297.78 -1297.78 -1144.42 -1297.78

∑Vrtj -3737.45 -3886.68 -3905.03 -3782.15 -4078.89

∑Travel time 29261 28259 27752 28446 29801

∑Traveled distance 3625260 3512560 3512560 3597200 3512560

Table 9 Coefficients of Variation of Calculated Indicators

 RTJ  RT  R  RJ

-0.01 0.00 -0.01 -0.01 -0.04

-0.05 -0.04 -0.05 -0.05 -0.11

-0.02 -0.02 -0.02 -0.02 -0.02
-0.01 -0.01 -0.01 -0.02 -0.02
0.01 0.01 0.01 0.01 0.04
0.00 0.00 0.00 0.00 0.00

State 1
V

r

V
t

V
j

∑Realised Utility
∑Summe Fahrtzeiten
∑Summe Fahrtdistanzen

Table 10 Coefficients of Variation of Predicted Variations

RTJ RT RJ

2.10 0.85 0.53 1.03

0.70 0.66 1.03 0.74

0.18 #DIV/0! #DIV/0! 0.18
0.29 0.54 0.44 0.23

-2.10 -0.77 -0.46 -0.72
0.24 #DIV/0! #DIV/0! 0.15

R
V

r

V
t

V
j

∑Realised Utility
∑Summe Fahrtzeiten
∑Summe Fahrtdistanzen
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Table 11 Coefficients of Variation of Absolute and Relative Errors

0.39 0.35 1.09 -49.85 -5.05 -3.80

-13.02 -0.81 -1.63 2.69 -1.36 5.54

-0.18 -0.18 -0.41 0.00 0.00 -0.32
-0.50 -0.41 -1.84 -0.48 -0.30 -1.99
-0.31 -0.21 -0.39 -10.56 -4.36 -4.32
-0.24 -0.24 -0.73 0.00 0.00 -0.66

F
RTJ

F
R

F
RJ

f
RT

 f
R
 f

RJ
 

V
r

V
t

V
j

∑Realised Utility
∑Summe Fahrtzeiten
∑Summe Fahrtdistanzen
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