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Abstract

Deriving optimal traffic management schemes for urban raatevorks typically relies
on the use of complex simulation tools, that capture in tétai behavior of drivers as
well as their interaction with the network infrastructurehe integration of these traffic
simulators within an optimization framework is an intrieaask. Indeed, these simulators
can be seen as stochastic nonlinear functions that are gixpea evaluate.

Simulation-based network optimization should thereféaet svith an important modeling
effort, in order to exploit the structure of the problem ahtialn particular, we believe
that in order to perform both fast and reliable simulati@s4xd optimization for congested
networks, information from the simulation tool should bentmned with information
from a metamodel (surrogate) that captures at a lower dedstail the structure of the
underlying problem.

In this paper, we propose a surrogate that combines infasm&tom a calibrated micro-
scopic traffic simulation model with an analytical queuenggwork model. We integrate
this surrogate within a derivative-free trust region optiaion framework. We apply the
framework to solve a fixed-time traffic signal control prabléor a subnetwork of the
Lausanne city center. We compare the performance of theedkesignal plans with that
of an existing signal plan for the city of Lausanne.
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1 Introduction

Deriving optimal traffic management schemes for urban raatevorks typically relies
on the use of microscopic simulation tools that capture taitiéghe behavior of drivers
as well as their interaction with the network infrastruetuiThese simulation tools can
provide accurate network performance estimates in theegbaf scenario-based analysis
or sensitivity analysis. Nevertheless, their integratithin an optimization framework
remains an intricate process. A given traffic managememseltan be formulated as:

min Bf(z,2,p )],
where the objective is to minimize the expected value of tablé network performance
measuref. This performance measure is a function of a decision orrobmector x,
endogenous variablesexogenous parameterand a random componentThe feasible
space) consists of a set of constraints that linko z, p and f. For instance, a traffic signal
control problem can tak¢ as the travel time and as the green splits for the signalized
lanes. Elements such as the total demand or the networkagpalill be captured by
p, while the distribution of the demand (route choice decisjand the capacities of the
signalized lanes will be captured khy The random componentdescribes the noise
associated with a given realization pf

The various traffic models embedded within the simulatoreritl detailed and realistic
model, but lead to nonlinear objective functions with noikamde closed form, and con-
taining potentially several local minima. Since these &pelsastic models, we can only
derive estimates of[f]. Additionally, computing these estimates is computatigrex-
pensive, since they involve running numerous replicatiétssa nonlinear stochastic and
evaluation-expensive problem, it is complex to addrespratice, the aim of simulation
optimization (SO) problems is to identify improved sets8ngather than seek or proove
optimality.

We believe that in order to perform both fast and reliableusation optimization for
congested networks, information from the simulation tdadd be combined with in-
formation from a surrogate network model that analyticaliytures the structure of the
underlying problem. In this paper, we propose such a suteodrst, we present a lit-
erature review of surrogate-based SO methods (Seldtiom23ettior B we present the
optimization framework and the surrogate model. We themvdimw this method applies
to a fixed-time traffic signal optimization problem (Sectidin We comment on imple-
mentation issues (Secti@h 5) and present empirical reisuBsctior6.
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2 Literature review

Barton and Meckesheimer (2006) provide a classification amdview of simulation-
optimization methods. Continuous SO problems fall into tategories: direct gradient
and metamodel methods. Direct gradient methods estimatgrtdient of the simula-
tion response, and then resort to stochastic gradiendlasbniques such as stochastic
approximation|(Spall, 2003). These methods do not attemfit & global approxima-
tion to the objective function. The simulation functionsadient can be estimated with
direct methods (e.g. perturbation analysis), which regkirowledge of the underlying
probabilistic process (e.g. input probability distrilmurs). In particular, automatic differ-
entiation methods allow the exact evaluation of gradientséquire the source code of
the simulation model to be available (see Cehal. (2000) and references herein). The
gradient can also be estimated with indirect methods, whgsg only function evalua-
tions (e.g. finite difference, simultaneous perturbat®pa]l, 2003). Although there have
been significant advances and novel approaches for grasbéntation ((FLet al., 2005;
Fu,12006), methods that rely on direct derivative informatbften require more function
evaluations, and their convergence is sensitive to theracgwf the gradient estimation.

Metamodel methods use an indirect-gradient approach byuoting the gradient of a
surrogate model (or metamodel), which is a deterministicfion, instead of the gradient
of the simulation response. The main advantage of a metdmgaproach is that the
stochastic response of the simulation is replaced by ardetetic metamodel response
function, then deterministic optimization techniques barused. Metamodels are often
a linear combination of basis functions from a parametrinifia  The most common
approach is the use of low-order polynomials (e.g. lineaquadratic). Spline models
have also been used, although their use within an SO frankdvesrfocused on univariate
or bivariate functions, and as Barton and Meckesheimergp@@ntion: “unfortunately,
the most popular and effective multivariate spline methads based on interpolating
splines, which have little applicability for SO”. Radial 9ia functions have also been
proposed|(Oeuvray and Bierlaite, 2009). The existing metshmethods fix apriori a
functional form for the metamodel (e.g. quadratic). Thectional forms considered are
general-purpose forms, that are chosen based on theirti@adlyactability, but do not
take into account any information with regards to the speotbjective function, let alone
the structure of the underlying problem.

In this paper, we use a metamodel method to perform SO. Thamoelel of interest
combines information from the simulator and from an anettnetwork model. For a
given problem, the analytical model will yield a differeninictional form for the objec-
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tive function. The metamodel proposed in this paper goesimbexisting metamodel
approaches since the functional form is problem specificis Ebmes at the cost of
deriving a framework that is particularly suited for netwaoptimization but not intended
for arbitrary optimization problems.

In order to integrate the proposed metamodel into an egigiptimization method, we
review the algorithms that allow for an arbitrary metamodehese methods are called
multi-model or hybrid methods. They share a common motwativhich is to combine
the use of models with varying evaluation costs (low versgk-fidelity models, or coarse
versus fine models).

A trust-region optimization framework for unconstraingdiglems allowing for multiple

models was proposed hy Carter (1986) (see references Herginevious multi-model

frameworks). His work analyses the theoretical propedies derives a global conver-
gence theory for several types of multi-model algorithms.allows for nonquadratic

models as long as at least one model is a standard quadratiauniformly bounded

curvature.

The Approximation and Model Management Optimization/Feamork (AMMO or
AMMF) is a trust-region framework for generating and mangga sequence of meta-
models. There are several versions of the algorithm: foronstrained problems
(Alexandrovet al., 11998), bound constrained (Alexandretvall, 2000), inequality con-
strained |(Alexandroet al,, 11999), generally constrained (Alexandmehall, 2001). Al-
though no restrictions are imposed on the type of surrogatesed, it is a first-order
method that requires that the model and the objective fancts well as their first-order
derivatives, coincide at each major (or accepted) iterdteus the metamodel must al-
ways behave as a first-order Taylor series approximatiors.i$ka strong restriction if the
function is noisy and expensive to evaluate.

The Surrogate-Management framework (SMF) proposed by &uwlall (1999) is a
derivative-free method for bound constrained problemss liased on a direct search
technique called pattern search. Since direct search itpestypically require many
function evaluations, they use a surrogate model of thectiagefunction to improve the
performance of the algorithm. The surrogate model usediistarpolated kriging model.
Nevertheless, interpolation techniques are inapprapfatnoisy responses.

The Space Mapping (SM) technique and its many verslons (Baatiall, 2006, 2004) is
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a simulation-based optimization technique that uses twiaimedels: a fine and a coarse
model. Both models are often simulation-based. The coaoskehs constructed based on
a transformation of the endogenous variables (“space mgpphat minimizes the error
for a sampled set of high-fidelity response values. NevirsiseSM relies on the assump-
tion that via a transformation of the endogenous variatllescbarse model will exhibit
the physical/mathematical properties of the fine madelXAteirov and Lewis, 2001) and
as|Bandleet al. (2004) mention “the required interaction between coarseehdine
model, and optimization tools makes SM difficult to automatthin existing simula-
tors”. |Alexandrov and Lewis (2001) give a comparison of thHdMO, the SMF and the
SM methods.

Connet all (2009a) recently proposed a trust-region derivative-fieenework for
unconstrained problems. This framework allows for arbjtraetamodels and makes no
assumption on how these metamodels are fitted (interpolatisegression). To ensure
global convergence a model improvement algorithm guaesntieat the models have a
uniform local behavior (i.e. satisfy Taylor-type boundskifinite number of steps.

Derivative-free (DF) methods do not require nor do they iexh} approximate deriva-

tives. Resorting to a DF algorithm, rather than to first orosgcorder algorithms, is
therefore appropriate for noisy problems where the devieatare difficult to obtain and
often unreliable. This is also the case when the evaluafitrembjective function is com-
putationally expensive, or when the simulation source d¢sdmavailable, the simulator
must then be treated as a black box (Moré and/Wild, 2009).drighd of transportation,
the simulators fall into all three of these categories. Twawill opt for a DF approach.

Among the two main strategies used to ensure global cormegegéne search and trust re-
gion methods, the latter are more appropriate for our cosiage they “extend more nat-
urally than line search methods to models that are not gtieslmaith positive Hessians”
(Carter) 1986). Trust-region (TR) methods when both first s&cond-order derivatives
are unavailable is a relatively recent topic (see Cenal. (2009b) for references). Ad-
ditionally, the most common approach for fitting metamodethin a TR framework is
interpolation. Nevertheless, for noisy functions we badithat regression is more appro-
priate since it is less sensitive to the inaccuracy of theoladions.

The framework proposed kiy Comhal. (20093), as a derivative-free TR method that
allows for arbitrary models and does not impose interpoiatis therefore particularly
appealing. We will therefore integrate our metamodel withis framework.
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3 Method

In this section, we first describe the main ideas of the optitimon algorithm that will be
used. We then present the metamodel.

3.1 Algorithmic franework

For an introduction to trust region (TR) methods, we referrdrader to Conast all (2000).
They summarize the main steps of a TR method inBasic trust region algorithmThe
method proposed ky Coret all (2009a) builds upon thBasic TR algorithnby adding
two additional steps: a model improvement step and a ditiicstep. We present the
main steps of the algorithm. For a detailed descriptior sgen€&t al. (2009a). A given
iterationk of the algorithm considers a metamodel, an iterater, and a TR radiug\,.
Each iteration consists of 5 steps:

e Criticality step. This step may modifyn, andA, if the measure of stationarity is
close to zero.

e Step calculation. Approximately solve the TR subproblem to yield a trial point

e Acceptance of the trial point. The actual reduction of the objective function is
compared to the reduction predicted by the model, this deters whether the trial
point is accepted or rejected.

e Model improvement. Either certify thatmn, is fully linear in the TR or carry out
improvement steps.

e TR radius update.

3.2 Metamodel

The metamodel combines information from two models: a satimh model and an ana-
lytical queueing model. We first present these two modelgher describe how they are
combined.

Simulation model. We use a calibrated microscopic traffic simulation modehefltau-
sanne city center. A detailed description of this modelvggiinlDumont and Bert
(2006). It is implemented with the AIMSUN simulator (T'SS,020. It contains
a total of 652 roads and 231 intersections, 49 of which araasimed. For a
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given decision vector the simulator provides a realization of the random variable
f(x7 Z7p7 6)'

Analytical queueing model. This model resorts tdinite capacity queueing theornp

capture the key traffic dynamics and the underlying netwaémkcture, e.g. how
upstream and downstream queues interact, how this inienastlinked to network
congestion. The model consists of a system of nonlineartiensa It is formulated
based on a set of exogenous parameidisat capture the network topology, the
total demand, as well as the turning probabilities. A setrmfagienous variableg
describe the traffic dynamics, e.g. spillback probabsitibe average rates at which
a spillback diffuses, queue length stationary distritngid=or a given decision vec-
tor « the network model yields the objective functidiz, y, 6).

A detailed description of the queueing model and a case stiugyrating how the
endogenous variables describe the formation and diffusiaongestion is given
inOsorio and Bierlaire (2009a). Its formulation for an urlraad network appears
inOsorio and Bierlaire (2009b). It has been successfuldue solve a fixed-time
traffic signal control problem in Osorio and Bierlaire (2809

We recall here the notation that we have introduced so far:

SN S SIS S SIS

decision vector;

estimate of the objective function derived by the queueing et
simulation response;

endogenous queueing model variables;

exogenous queueing model parameters;

endogenous simulation variabjes

exogenous simulation parameters

random component of the simulation response.

We now describe how andT" are combined to derive the metamodel The functional
form of m is:

m(z,y,0,a,8) =aT(zx,y,0) + ¢(zx, ),

where¢ is a quadratic polynomialy and are parameters of the metamodel. The poly-
nomial ¢ is quadratic with diagonal second derivative matrix. THisice is based on
existing numerical experiments for derivative-free TR noets which show that they are
often more efficient than full quadratic models (Powell, 200
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d d
¢(x> ﬁ) = ﬁO + Z 6]'55]' + Z ﬁp-i—jx??
j=1 i=1
whered is the dimension of,, andz; is the j* component of:.

At a given iterationk of the algorithm (described in Sectibn3.1), the parameteasda
of the metamodel are fitted using the current sample by spihie least squares problem:

ng
min (wis (f (2", 2%, p, €) —m(2", 9", 0, a, B)))?,
i=1
wherez’ represents thé” point in the sample, with the corresponding simulated cbser
vation f (2%, ', p, ¢'), ny, is the sample size and,; is the weight associated to th&
observation at iteratioh.

The weights capture the importance of each point with regardhe current iterate. The
work of|Atkesonet all (1997) gives a survey of weight functions and analyzes thei
oretical properties. We use what is known asitiverse distancaveight function, along
with the Euclidean distance, this leads to the followinggiiparameters:

B 1
L+ || — 2513

’LUkj

The weight of a given point is therefore inversely proporéibto its distance from the
current iterate. This will allow us to approximately haveaylbr-type behavior, where
local points have more weight.

The least squares problem is solved using the Matlab rolgim®nlin(The Mathworks,
2008).

4  Optimization Problem

4.1 Traffic signal control

We illustrate the use of this framework with a signal conpodblem for a subnetwork
of the city of Lausanne. A review of the different formulatg) as well as the definitions
of the traffic signal terms used hereatter, is given in Appedof Osorio and Bierlaire

(2009b). We consider a fixed-time signal control problem nghtbe offsets, the cycle
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times and the all-red durations are fixed. The stage stricgwso given. In other words,
the set of lanes associated with each stage as well as thersmgof stages are both
known. To formulate this problem we use the following naiati

b; available cycle ratio of intersectian

x(p) green split of phasg;

xy vector of minimal green splits for each phase
z set of intersection indices

Pr(i) set of phase indices of intersection

The problem is traditionally formulated as follows:

min E[f(z, z,p, €)] (1)
subject to
Z x(p)=b;, Viel 2)
pEPI(i)

In this problem the decision vectar consists of the green splits for each phase. The
objective is to minimize the expected travel time (Equaf). The linear constraintgl(2)
link the green times of the phases with the available cyobe fior each intersection. The
boundsl[(B) correspond to minimal green time values for ehels@ These have been set
to 4 seconds according to the Swiss standard (VSS) 1992).

4.2 TR subproblem

At a given iteratiork the TR subproblem includes three more constraints tharrévequs
problem. It is formulated as follows:
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quyn mk(x>y767ak76k) (4)
subject to

> a(p)=b,Viel (5)

pePr (i)

0(z,y,6) =0 (6)

|z —zplla < Ay (7)

y >0 (8)

T > T, 9)

wherez;, is the current iterate anfldenotes the queueing model. Equatidn (6) consists
of the system of nonlinear equations that define the queusindgl, the corresponding
endogenous variables are subject to positivity conssdiaguation[(B)). This system

is given explicitly and detailed in_Osorio and Bierlaire (®®) (Equations (9), (10) and
(12) of that paper). The analytical form @fis also detailed in Section 4 of that paper.
Constraint[(¥7) is the TR constraint. It uses the Euclideamn@onnet all,'2009a). Thus
the TR subproblem consists of a nonlinear objective fumctiobject to nonlinear and
linear equalities, a nonlinear inequality and bound casts. This problem is solved
with the Matlab routine for constrained nonlinear problefirincon which resorts to a
sequential quadratic programming method (Coleman ardi96,11994).

5 Implementation notes

Constraints As described in Sectionl 2, DF TR methods are a relativelyntetapic
(Connet al., 12009b). The algorithms developed so far are derived basebond
theoretical properties that lead to a solid global convecgetheory, but they are
mostly formulated for unconstrained problems. Unfortehatthe optimization
problems encountered in practice are rarely unconstraii@uohnet al. (2009b)
reviews constrained DF algorithms, and confirms that forst@med problems
“currently, there is no convergence theory developed forift@rpolation-based
methods”, not to mention TR methods that allow for regressiodels| Conmt all
(1998) extends the use of a TR method for unconstrained gmubko problems
with general constraints. The traffic management probldraswe are interested

10
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in solving fall into the category of what they denoteeasyconstraints. These are
general constraints that are continuously differentiailé whos first order partial
derivatives can be computed relatively cheaply (with rdgao the cost of eval-
uating the objective function). In their approach they url® such constraints in
the TR subproblem, which ensures that all trial points aesifde. | Conret all
(2009b) mention that such an approach is often sufficientactce. Here we use
the method proposed by Coenall (20094a) for unconstrained methods, and extend
its use to constrained problems as Cemall (1998) propose.

Limited computational budget The main motivation to go beyond a pure quadratic sur-
rogate is to improve the short term performance of a given @Brdahm, since
near convergence a quadratic will asymptotically providedequate approxima-
tion for a second-order Taylor series model. Recently, iy@oirtance of evaluating
the short-term behavior of DF algorithms has been emphé&siyMoré and Wild
(2009) and Zhanet all (2009). Furthermore, DF applications often involve a lim-
ited computational budget. In many practical situationsygoroved solution rather
than a local optimum may be all that is required or that cardoeputed for a given
budget (Zhanet al., 2009). We will therefore focus on the performance of this
approach given a fixed and tight computational budget.

Criticality step Since we are interested in the short term behavior of thiscauh, the
theoretical considerations needed to ensure global cgemee are not our main fo-
cus. We assume that the limited resources are not sufficdeqgroach an optimal
point, i.e. the measure of stationarity will not go underegithreshold. Thus we
do not consider the criticality step of the original algbnt. We assume throughout
that the model is notertifiably fully linear (which is required when approaching
a stationary point so that the stationary measure of the huaaebe trusted). If
at a given iteration, the measure of stationarity does ge@wutids threshold then a
purely quadratic metamodel can be used (so that within & fimitnber of steps we
can ensure that it will satisfy Taylor-type bounds).

Model improvement step At each iteration we obtain one observation of the simulated
objective function (associated to the trial point), no et improvement steps are
carried out. In order to improve the performance of the algor, diversification
sampling should be carried out. Determining when and how diversification
should take place is currently being studied.

TR radius update There are 2 cases where the TR radius is reduced in the &lgorit
(1) if it is known that the model ifully linear, but it has over-predicted the reduc-
tion in the objective function; (2) when approaching a stadiry point (so that the
model becomes more accurate and the stationary measuresdamsted). Since

11
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we assume throughout that the model is eetifiably fully linearand we focus on
the short-term performance of the algorithm, the TR radusever reduced in this
implementation.

Initial sample Since our focus is on problems with a limited and tight corapiahal
budget, we assume that there are no initial observationtabiea Although the
least squares routine used allows for underdetermineémgstwhich in our case
occur when the dimension of the sampled space is smallertileanumber of pa-
rameters to estimaf/+ 2, we use augmented data to make the least-squares matrix
of full rank. These artificial observations are chosen sotti@parameters are near
an initial value (chosen as zero) and are attributed a sneadjivy (10~2).

Algorithmic parameters The following values are used for the parameters of the TR
algorithm: Ay = 103, Apay = 109,79, = 1073, 7, = 1.2. Typical values for
TR parameters are givenlin Carter (1986). For the algoriteaduo solve the TR
subproblem we set the tolerance for relative change in thectbke function to
10~? and the constraint tolerance 16-2. We limit the computational budget to 50
iterations, and use a random feasible point as the initigtpo

6 Empirical Analysis

We now evaluate the performance of the proposed method ksidenng a subnetwork

of the Lausanne city center. The subnetwork (Figlire 1) ¢osi#8 roads and 15 intersec-
tions. Nine intersections are signalized and control the 8630 roads. There are a total
of 51 phases that are considered variable. The intersedtiave a cycle time of either
90 or 100 seconds. The considered demand scenario corfdisésavening peak period

(17h-18h). Within this time period congestion graduallgreases.

The queueing model of this subnetwork consists of 102 quéilesTR subproblem con-
sists of 621 endogenous variables with their corresponidingr bound constraints, 408
nonlinear equality constraints, 171 linear equality caaiets and 1 nonlinear inequality
constraint.

For a given computational budget, our method yields an rogki signal plan for the
subnetwork. We then use the simulation model to evaluateffieet of this signal plan
upon the entire Lausanne network. We run 100 replicatiomvaduate the performance
of these 'optimal’ plans. Each replication is preceded b aninute warm-up period.

We compare the performance of the plans derived by this rdethith that of an existing

12
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Figure 1: Subnetwork of the Lausanne city center

signal plan for the city of Lausanne. For more information@&rning this existing control
plan we refer the reader to Dumont and Bert (2006). It is qaitdhallenge to compare
to this existing plan, since its a coordinated plan (i.e. egravaves exist on the main
arterials).

Figurel2 displays the empirical cumulative distributiondtion (cdf) of the average travel
times across the 100 replications for four signal plans. theethin solid lines correspond
to the ‘optimal’ plans derived by the proposed method, thektbolid line corresponds
to the existing plan, and the two dotted lines correspontdéaandom initial plans. The
plans derived based on the first initial plan are labeled erfitfure asr;. The labeled
cdf’s show that starting off from a poorly performing initigoint, our model leads to a
plan with very good performance. The other initial point laagerformance similar to
that of the existing plan. Our method still yields a minor noyement. By comparing the
performance of the plans derived by the proposed methoa@toflthe existing plan, these
preliminary results illustrate the added value of our applo With no initial sample, and
a tight computational budget, our method is able to idersiigyal plans that improve the
distribution of the average travel time.

We have also run the algorithm using a purely quadratic medi@hn Nevertheless, as
mentioned in Sectiol 5 the algorithm is initialized with mitial sample and a diversifi-
cation strategy has not yet been integrated. Thus the métsetl on a purely quadratic
model does not search at all the feasible space, and yieltpanal’ points the ini-
tial random points. Without a diversification strategy campg these two metamodel
methods directly is of little interest.

13
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Figure 2: Empirical cumulative distribution function ofetlaverage travel time

7 Conclusion

This paper presents an simulation optimization frameworkttie management of con-
gested networks. It proposes a metamodel that combinesrafmn from a traffic sim-

ulation tool and an analytical network model. The framewrilustrated by solving

a fixed-time signal control problem for a subnetwork of thes¢anne city center. The
performance of the derived plans is compared to that of astiegiplan for the city of

Lausanne. Although the method is run with no initial sampld a tight computational
budget, it derives well performing signal plans.

These are preliminary results, but they indicate that thigr@ach may be suitable for
high dimensional problems (more than 100 variables) thatidvotherwise require a large
sample size to initially fit the metamodel of interest. E#idily tackling constrained high
dimensional problems is one of the main limitations of erggtDF methods. The main
component of this methodology that we are currently worlongis the definition of a
diversification sampling strategy, that would refine the elathprovement step of the
algorithm. Furthermore, the sensitivity of the method te thumerous algorithmic pa-
rameters needs to be evaluated.

14
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