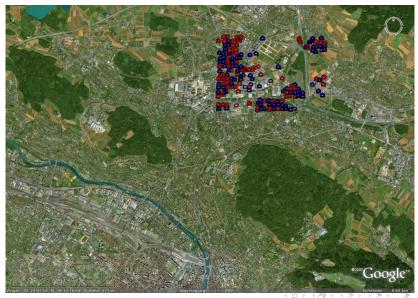
An agent-based model of travel demand of all of Switzerland

The MATSim-T developer team^{1,2,3}

¹Institute for Transport Planning and Systems Swiss Federal Institute of Technology (ETH) Zurich

²Transport Systems Planning and Transport Telematics Technical University of Berlin

³Digitec AG, Zurich

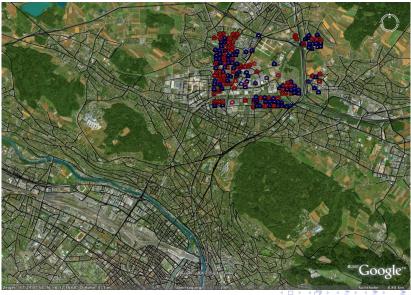

12 - 14 September 2007, Monte Verità

Initial demand ●○○○○ Iterating for results

Validation

Literatur

Synthetic agent population


Initial demand

Iterating for results

Validation

Literatur

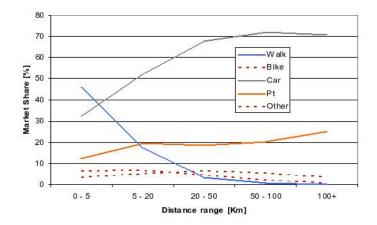
Model of street network


Initial	demand
0000	

Iterating for results

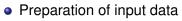
Validation

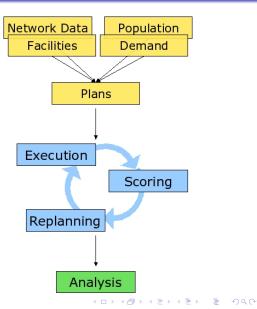
Literatur


Activity plan

Initial demand ○○○●○	Iterating for results	Validation 000	Literatur
Share of car mo	de		
Legend nde: car share 5% - 42% 43% - 51% 52% - 56% 57% - 78%			T

Initial demand	Iterating for results	Validation	Literatur
00000			


Market share vs. distance


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへ⊙

Cimulation atom			
Initial demand	Iterating for results ●○○○	Validation 000	Literatur

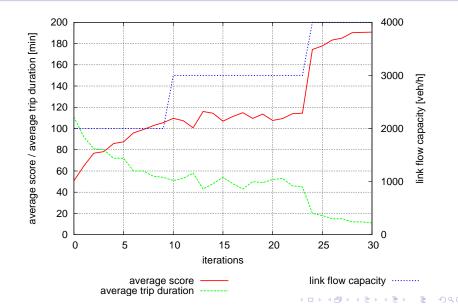
- Network data
- Facilities
- Population
- Initial demand
- Plan generation
- Plan execution by traffic flow simulation
- Scoring of plans, re-planning and re-execution
- Analysis of simulation results

Initial demand	Iterating for results ○●○○	Validation 000	Literatur
Scoring fun	ction		

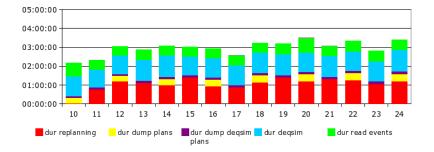
Total score of a plan:

$$U_{total} = \sum_{i=1}^{n} U_{perf,i} + \sum_{i=1}^{n} U_{late,i} \sum_{i=1}^{n} U_{travel,i}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●


where

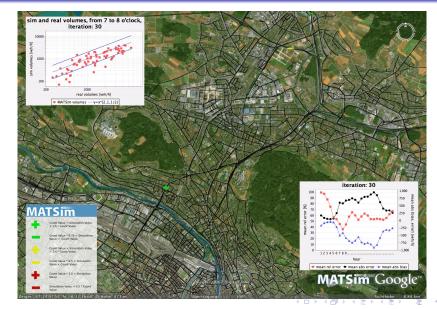
- n number of activities
- Uperf, i utility of performing activity i
- Ulate, i utility of arriving late at activity i
- Utravel, i utility of travelling to activity i


for details see Charypar and Nagel (2005)

Initial demand	Iterating for results	Validation	Literatur
• •			

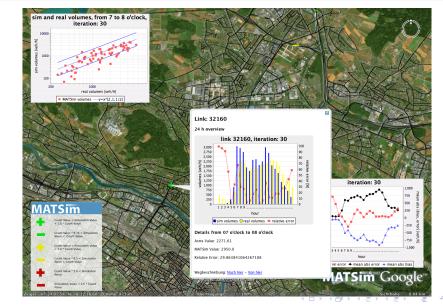
System relaxation

Initial demand	Iterating for results ○○○●	Validation 000	Literatur
Run times			


Initial demand

Iterating for results

Validation ●○○


Literatur

Counting stations

Provisional result			
	Iterating for results	Validation ○●○	Literatur

Provisional results

) 2 (?

Initial demand	Iterating for results	Validation ○○●	Literatur
Thank you!			

http://www.matsim.org

Initial demand	Iterating for results	Validation	Literatur

Charypar, D. and K. Nagel (2005) Generating complete all-day activity plans with genetic algorithms, *Transportation*, **32** (4) 369–397.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ